(本題15分)已知函數(shù)是奇函數(shù),且圖像在點(diǎn) 為自然對(duì)數(shù)的底數(shù))處的切線斜率為3.
(1)  求實(shí)數(shù)、的值;
(2)  若,且對(duì)任意恒成立,求的最大值;
(3)  當(dāng)時(shí),證明:


(1) 由是奇函數(shù)
為偶函數(shù)
                ………………………………1分
時(shí),
                 …………3分
(2)     當(dāng)時(shí),令
       令
    上是增函數(shù)………………6分
 
 存在,使得
為減函數(shù);
為增函數(shù)     ………………8分
 
  ,   
 =3                   ………………10分
(3)     要證 
即證  
即證                    ………………12分
令   ,    
               ………………14分
所以
 是增函數(shù),又
         ………………15分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分15分)已知函數(shù)
(1)若函數(shù)上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求上的最大值和最小值;
(3)當(dāng)時(shí),求證對(duì)任意大于1的正整數(shù),恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)處取得極值,對(duì),恒成立,
求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若的兩個(gè)極值點(diǎn)為,且,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1) 設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(2) 證明: 當(dāng)時(shí),求證:  ;
(3) 設(shè),當(dāng)時(shí),不等式恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知x=4是函數(shù)f(x)=alnx+x2-12x+11的一個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分) 設(shè)函數(shù)f (x)=ln x在(0,) 內(nèi)有極值.
(Ⅰ) 求實(shí)數(shù)a的取值范圍;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求證:f (x2)-f (x1)>e+2-
注:e是自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)已知函數(shù)(常數(shù).
(Ⅰ) 當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)(為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

查看答案和解析>>

同步練習(xí)冊(cè)答案