2.定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),且在[0,1]上是增函數(shù),則f($\frac{1}{4}$),f(-$\frac{1}{4}$),f($\frac{3}{2}$)的大小關(guān)系是$f(-\frac{1}{4})$<$f(\frac{1}{4})$<$f(\frac{3}{2})$.

分析 根據(jù)題意,分析可得f($\frac{3}{2}$)=-f($\frac{3}{2}$-2)=-f(-$\frac{1}{2}$)=f($\frac{1}{2}$),又由函數(shù)在[0,1]上是增函數(shù),結(jié)合函數(shù)的奇偶性可得f(x)在[-1,0]上也是增函數(shù),則有f(-$\frac{1}{4}$)<f(0)<f($\frac{1}{4}$)<f($\frac{1}{2}$)=f($\frac{3}{2}$),即可得答案.

解答 解:根據(jù)題意,對(duì)于函數(shù)f(x),有f(x-2)=-f(x),即f(x)=-f(x-2),
則有f($\frac{3}{2}$)=-f($\frac{3}{2}$-2)=-f(-$\frac{1}{2}$),
又由函數(shù)f(x)為奇函數(shù),則有f(-x)=-f(x),
f(-$\frac{1}{2}$)=-f($\frac{1}{2}$),即-f(-$\frac{1}{2}$)=f($\frac{1}{2}$),
綜合有f($\frac{3}{2}$)=f($\frac{1}{2}$),
又由函數(shù)f(x)在[0,1]上是增函數(shù),則其在[-1,0]上也是增函數(shù),
則有f(-$\frac{1}{4}$)<f(0)<f($\frac{1}{4}$)<f($\frac{1}{2}$)=f($\frac{3}{2}$),
即$f(-\frac{1}{4})$<$f(\frac{1}{4})$<$f(\frac{3}{2})$
故答案為:$f(-\frac{1}{4})$<$f(\frac{1}{4})$<$f(\frac{3}{2})$.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,注意分析f($\frac{3}{2}$)與f($\frac{1}{2}$)的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在等比數(shù)列{an}中,公比q>1,a2=2,前三項(xiàng)和S3=7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=log2an,cn=$\frac{1}{_{n+1}•_{n+2}}$,設(shè)數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知實(shí)數(shù)a>0,函數(shù)$f(x)=\left\{\begin{array}{l}{e^{x-1}}+\frac{a}{2},x<0\\{e^{x-1}}+\frac{a}{2}{x^2}-(a+1)x+\frac{a}{2},x≥0\end{array}\right.$,若關(guān)于x的方程$f[-f(x)]={e^{-a}}+\frac{a}{2}$有三個(gè)不等的實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A.$(1,2+\frac{2}{e})$B.$(2,2+\frac{2}{e})$C.$(1,1+\frac{1}{e})$D.$(2,2+\frac{1}{e})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知P(x0,y0)是橢圓C:$\frac{x^2}{4}+{y^2}=1$上的一點(diǎn),F(xiàn)1,F(xiàn)2是C的兩個(gè)焦點(diǎn),若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}<0$,則x0的取值范圍是( 。
A.$({-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}})$B.$({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$C.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$D.$({-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)a=${∫}_{1}^{{e}^{2}}$$\frac{1}{x}$dx,則二項(xiàng)式(x+$\frac{a}{x}$)(2x-$\frac{1}{x}$)5的展開(kāi)式中的常數(shù)項(xiàng)是120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)不等式|x-2|<a的解集為A,且$\frac{3}{2}$∈A,$\frac{1}{2}$∉A,則a的取值范圍是( 。
A.$\frac{1}{2}$<a<$\frac{3}{2}$B.$\frac{1}{2}$≤a<$\frac{3}{2}$C.$\frac{1}{2}$<a≤$\frac{3}{2}$D.$\frac{1}{2}$≤a≤$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)單位向量.若|3$\overrightarrow{a}$-2$\overrightarrow$|=3,試求|3$\overrightarrow{a}$+$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.6人分別擔(dān)任六種不同工作,已知甲不能擔(dān)任第一個(gè)工作,則任意分工時(shí),乙沒(méi)有擔(dān)任第二項(xiàng)工作的概率為$\frac{21}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,且cos2B-cos2A=2sinC•(sinA-sinC).
(1)求角B的大小;
(2)若$b=\sqrt{3}$,求2a+c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案