分析 根據(jù)題意,分析可得f($\frac{3}{2}$)=-f($\frac{3}{2}$-2)=-f(-$\frac{1}{2}$)=f($\frac{1}{2}$),又由函數(shù)在[0,1]上是增函數(shù),結(jié)合函數(shù)的奇偶性可得f(x)在[-1,0]上也是增函數(shù),則有f(-$\frac{1}{4}$)<f(0)<f($\frac{1}{4}$)<f($\frac{1}{2}$)=f($\frac{3}{2}$),即可得答案.
解答 解:根據(jù)題意,對(duì)于函數(shù)f(x),有f(x-2)=-f(x),即f(x)=-f(x-2),
則有f($\frac{3}{2}$)=-f($\frac{3}{2}$-2)=-f(-$\frac{1}{2}$),
又由函數(shù)f(x)為奇函數(shù),則有f(-x)=-f(x),
f(-$\frac{1}{2}$)=-f($\frac{1}{2}$),即-f(-$\frac{1}{2}$)=f($\frac{1}{2}$),
綜合有f($\frac{3}{2}$)=f($\frac{1}{2}$),
又由函數(shù)f(x)在[0,1]上是增函數(shù),則其在[-1,0]上也是增函數(shù),
則有f(-$\frac{1}{4}$)<f(0)<f($\frac{1}{4}$)<f($\frac{1}{2}$)=f($\frac{3}{2}$),
即$f(-\frac{1}{4})$<$f(\frac{1}{4})$<$f(\frac{3}{2})$
故答案為:$f(-\frac{1}{4})$<$f(\frac{1}{4})$<$f(\frac{3}{2})$.
點(diǎn)評(píng) 本題考查函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,注意分析f($\frac{3}{2}$)與f($\frac{1}{2}$)的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(1,2+\frac{2}{e})$ | B. | $(2,2+\frac{2}{e})$ | C. | $(1,1+\frac{1}{e})$ | D. | $(2,2+\frac{1}{e})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}})$ | B. | $({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$ | C. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | D. | $({-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$<a<$\frac{3}{2}$ | B. | $\frac{1}{2}$≤a<$\frac{3}{2}$ | C. | $\frac{1}{2}$<a≤$\frac{3}{2}$ | D. | $\frac{1}{2}$≤a≤$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com