【題目】命題A:是方程的兩個(gè)實(shí)根,不等式對(duì)任意實(shí)數(shù)恒成立;命題B:不等式)有解.AB為真,求:m的取值范圍.

【答案】

【解析】

由韋達(dá)定理求出,然后求得,進(jìn)而求出的取值范圍,由已知條件可得,進(jìn)而求出命題A:對(duì)應(yīng)的m的取值范圍。構(gòu)造函數(shù)),討論去掉絕對(duì)值號(hào)求出函數(shù)的最大值2m,由不等式)有解2m>1,進(jìn)而求出命題B對(duì)應(yīng)的m的取值范圍。由AB為真,可知AB都為真命題,即可求得結(jié)果。

因?yàn)?/span>、是方程的兩個(gè)實(shí)根,所以,

所以, ,因?yàn)?/span>,所以,因?yàn)椴坏仁?/span>對(duì)任意實(shí)數(shù)恒成立,所以,所以,即,解得。所以,命題A: 。

),則,結(jié)合該函數(shù)的性質(zhì)可知,該函數(shù)的最大值為2m,由不等式)有解,可得2m>1,解得 。所以命題B 。

因?yàn)?/span>AB為真,所以 ,所以 。

所以,m的取值范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三有名學(xué)生,按性別分層抽樣從高三學(xué)生中抽取名男生,名女生期未某學(xué)科的考試成績(jī),得到如下所示男生成績(jī)的頻率分布直方圖和女生成績(jī)的莖葉圖.

(1)試計(jì)算男生考試成績(jī)的平均分與女生考試成績(jī)的中位數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值);

(2)根據(jù)頻率分布直方圖可以認(rèn)為,男生這次考試的成績(jī)服從正態(tài)分布,試計(jì)算男生成績(jī)落在區(qū)間內(nèi)的概率及全?荚嚦煽(jī)?cè)?/span>內(nèi)的男生的人數(shù)(結(jié)果保留整數(shù));

(3)若從抽取的名學(xué)生中考試成績(jī)優(yōu)勢(shì)(分以上包括分)的學(xué)生中再選取名學(xué)生,作學(xué)習(xí)經(jīng)驗(yàn)交流,記抽取的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.

參考數(shù)據(jù),若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,底面ABCD為矩形,平面PAB⊥平面ABCDABAP=3,ADPB=2,E為線(xiàn)段AB上一點(diǎn),且AEEB=7︰2,點(diǎn)F、G分別為線(xiàn)段PAPD的中點(diǎn).

(1)求證:PE⊥平面ABCD;

(2)若平面EFG將四棱錐PABCD分成左右兩部分,求這兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓錐曲線(xiàn) 為參數(shù))和定點(diǎn), , 是此圓錐曲線(xiàn)的左、右焦點(diǎn).

(1)以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,求直線(xiàn)的極坐標(biāo)方程;

(2)經(jīng)過(guò)且與直線(xiàn)垂直的直線(xiàn)交此圓錐曲線(xiàn), 兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)關(guān)于x的不等式:;;

1)分別求出的解集;

2)若同時(shí)滿(mǎn)足x值也滿(mǎn)足,求m的取值范圍;

3)若同時(shí)滿(mǎn)足x至少滿(mǎn)足的一個(gè),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:;

(2)討論函數(shù)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng) 時(shí),求曲線(xiàn) 在點(diǎn) 處的切線(xiàn)方程;

(2)求 的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)將函數(shù)寫(xiě)成分段函數(shù)的形式,并作出此函數(shù)的圖象;

(2)判斷函數(shù)上的單調(diào)性,并加以證明;

(3)若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點(diǎn),異面直線(xiàn)PA與CD所成的角為90°.

(I)在平面PAB內(nèi)找一點(diǎn)M,使得直線(xiàn)CM∥平面PBE,并說(shuō)明理由;

(II)若二面角P-CD-A的大小為45°,求直線(xiàn)PA與平面PCE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案