A. | -9 | B. | $-\frac{7}{3}$ | C. | $-\frac{2}{3}$ | D. | $\frac{2}{3}$ |
分析 由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,聯立方程組求得最優(yōu)解的坐標,分類代入目標函數求得m的值;
(Ⅱ)由題意求得直線y=-mx+z的斜率的范圍,得到m的取值范圍.
解答 解:由x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y+1≥0\\ x≤3\end{array}\right.$,作出可行域如圖:
聯立$\left\{\begin{array}{l}{x=3}\\{x+y=2}\end{array}\right.$,解得A(3,-1),
化目標函數z=mx+y為y=-mx+z,目標函數的最小值就是函數在y軸上的截距最小,最小值為:-3,
由圖可知,m<0,使目標函數取得最小值的最優(yōu)解為A(3,-1)把A(3,-1)代入z=mx+y=-3,求得m=-$\frac{2}{3}$.
故選:C.
點評 本題考查簡單的線性規(guī)劃,考查了數形結合的解題思想方法,體現了分類討論的數學思想方法,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{x^2}{4}-\frac{y^2}{12}=1$ | B. | $\frac{y^2}{4}-\frac{x^2}{12}=1$ | C. | $\frac{x^2}{12}-\frac{y^2}{4}=1$ | D. | $\frac{y^2}{12}-\frac{x^2}{4}=1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com