【題目】已知橢圓離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形.點(diǎn)C是橢圓的下頂點(diǎn),經(jīng)過(guò)橢圓中心O的一條直線與橢圓交于A,B兩個(gè)點(diǎn)(不與點(diǎn)C重合),直線CA,CB分別與x軸交于點(diǎn)D,E

1)求橢圓的標(biāo)準(zhǔn)方程.

2)判斷的大小是否為定值,并證明你的結(jié)論.

【答案】12是定值.證明見(jiàn)解析

【解析】

1)根據(jù)橢圓離心率,以及點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形,求得的值,由此求得橢圓的標(biāo)準(zhǔn)方程.

2)設(shè)出兩點(diǎn)的坐標(biāo),求得直線的方程,由此求得點(diǎn)的坐標(biāo),同理求得點(diǎn)的坐標(biāo),通過(guò)計(jì)算,證得,從而證得為定值.

1)依題意可知.由于點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形,所以,故,所以.

所以橢圓方程為

2是定值.

設(shè),

則直線CA的方程為

代入,解得,即

同理,解得

代入上式,得

所以,即證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的部分圖象如圖所示,其中,.

)求的解析式;

)求在區(qū)間上的最大值和最小值;

)寫(xiě)出的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠在兩個(gè)車(chē)間,內(nèi)選取了12個(gè)產(chǎn)品,它們的某項(xiàng)指標(biāo)分布數(shù)據(jù)的莖葉圖如圖所示,該項(xiàng)指標(biāo)不超過(guò)19的為合格產(chǎn)品.

(1)從選取的產(chǎn)品中在兩個(gè)車(chē)間分別隨機(jī)抽取2個(gè)產(chǎn)品,求兩車(chē)間都至少抽到一個(gè)合格產(chǎn)品的概率;

(2)若從車(chē)間,選取的產(chǎn)品中隨機(jī)抽取2個(gè)產(chǎn)品,用表示車(chē)間內(nèi)產(chǎn)品的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=CBD,AB=BD

1)證明:平面ACD⊥平面ABC;

2)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有編號(hào)為1,2,34,5的五把鎖和對(duì)應(yīng)的五把鑰匙.現(xiàn)給這5把鑰匙也貼上編號(hào)為1,2,34,5的五個(gè)標(biāo)簽,則共有______種不同的貼標(biāo)簽的方法:若想使這5把鑰匙中至少有2把能打開(kāi)貼有相同標(biāo)簽的鎖,則有______種不同的貼標(biāo)簽的方法.(本題兩個(gè)空均用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年9月第三個(gè)公休日是全國(guó)科普日.某校為迎接2019年全國(guó)科普日,組織了科普知識(shí)競(jìng)答活動(dòng),要求每位參賽選手從4生態(tài)環(huán)保題2智慧生活題中任選3道作答(每道題被選中的概率相等),設(shè)隨機(jī)變量ξ表示某選手所選3道題中“智慧生活題”的個(gè)數(shù).

(Ⅰ)求該選手恰好選中一道智慧生活題的概率;

(Ⅱ)求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x3ax2x+1aR).

(1)當(dāng)a2時(shí),求曲線yfx)在點(diǎn)(1,f 1))處的切線方程;

(2)當(dāng)a0時(shí),設(shè)gx)=fx+x

①求函數(shù)gx)的極值;

②若函數(shù)gx)在[1,2]上的最小值是﹣9,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,,分別是線段,的中點(diǎn),

I)在棱上找一點(diǎn),使得平面平面,請(qǐng)寫(xiě)出點(diǎn)的位置,并加以證明;

(Ⅱ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市圖書(shū)館準(zhǔn)備進(jìn)一定量的書(shū)籍,由于不同年齡段對(duì)圖書(shū)的種類(lèi)需求不同,為了合理配備資源,現(xiàn)對(duì)該市看書(shū)人員隨機(jī)抽取了一天60名讀書(shū)者進(jìn)行調(diào)查.將他們的年齡分成6段:后得到如圖所示的頻率分布直方圖,問(wèn):

1)在60名讀書(shū)者中年齡分布在的人數(shù);

2)估計(jì)60名讀書(shū)者年齡的平均數(shù)和中位數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案