【題目】某工廠在兩個(gè)車間,內(nèi)選取了12個(gè)產(chǎn)品,它們的某項(xiàng)指標(biāo)分布數(shù)據(jù)的莖葉圖如圖所示,該項(xiàng)指標(biāo)不超過19的為合格產(chǎn)品.
(1)從選取的產(chǎn)品中在兩個(gè)車間分別隨機(jī)抽取2個(gè)產(chǎn)品,求兩車間都至少抽到一個(gè)合格產(chǎn)品的概率;
(2)若從車間,選取的產(chǎn)品中隨機(jī)抽取2個(gè)產(chǎn)品,用表示車間內(nèi)產(chǎn)品的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值.
(2)是否存在實(shí)數(shù),使得函數(shù)在上的最小值為0?若存在,試求出的值:若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(1)求證:DC⊥平面ABC;
(2)求BF與平面ABC所成角的正弦值;
(3)求二面角B-EF-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了了解本公司職員的早餐費(fèi)用情況,抽樣調(diào)査了100位職員的早餐日平均費(fèi)用(單位:元),得到如圖所示的頻率分布直方圖,圖中標(biāo)注的數(shù)字模糊不清.
(1)試根據(jù)頻率分布直方圖求的值,并估計(jì)該公司職員早餐日平均費(fèi)用的眾數(shù);
(2) 已知該公司有1000名職員,試估計(jì)該公司有多少職員早餐日平均費(fèi)用多于8元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.已知冪函數(shù)在上單調(diào)遞減則或
B.函數(shù)的有兩個(gè)零點(diǎn),一個(gè)大于0,一個(gè)小于0的一個(gè)充分不必要條件是.
C.已知函數(shù),若,則的取值范圍為
D.已知函數(shù)滿足,,且與的圖像的交點(diǎn)為則的值為8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了確定下一年度投入某種產(chǎn)品的宣傳費(fèi)用,需了解年宣傳費(fèi)(單位:萬元)對(duì)年銷量(單位:噸)和年利潤(rùn)(單位:萬元)的影響對(duì)近6年宣傳費(fèi)和年銷量的數(shù)據(jù)做了初步統(tǒng)計(jì),得到如下數(shù)據(jù):
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣傳費(fèi)(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬元)與年銷售量(噸)之間近似滿足關(guān)系式,兩邊取對(duì)數(shù),即,令,即對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)從表中所給出的6年年銷售量數(shù)據(jù)中任選2年做年銷售量的調(diào)研,求所選數(shù)據(jù)中至多有一年年銷售量低于21噸的概率.
(2)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(3)若生產(chǎn)該產(chǎn)品的固定成本為200(萬元),且每生產(chǎn)1(噸)產(chǎn)品的生產(chǎn)成本為20(萬元)(總成本=固定成本+生產(chǎn)成本+年宣傳費(fèi)),銷售收入為(萬元),假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),2019年該公司計(jì)劃投入108萬元宣傳費(fèi),你認(rèn)為該決策合理嗎?請(qǐng)說明理由.(其中為自然對(duì)數(shù)的底數(shù),)
附:對(duì)于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,當(dāng)輸入的的值為4時(shí),輸出的的值為2,則空白判斷框中的條件可能為( ).
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形.點(diǎn)C是橢圓的下頂點(diǎn),經(jīng)過橢圓中心O的一條直線與橢圓交于A,B兩個(gè)點(diǎn)(不與點(diǎn)C重合),直線CA,CB分別與x軸交于點(diǎn)D,E.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)判斷的大小是否為定值,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com