3.已知函數(shù)f(x)滿足f($\frac{1}{x}$)+$\frac{1}{x}$f(-x)=2x(x≠0),則f(-2)=( 。
A.$-\frac{7}{2}$B.$\frac{9}{2}$C.$\frac{7}{2}$D.$-\frac{9}{2}$

分析 根據(jù)題意,將x=2和x=-$\frac{1}{2}$代入f($\frac{1}{x}$)+$\frac{1}{x}$f(-x)=2x可得f($\frac{1}{2}$)+$\frac{1}{2}$f(-2)=4①,f(-2)-2f($\frac{1}{2}$)=-1②,聯(lián)立兩式解可得f(-2)的值,即可得答案.

解答 解:根據(jù)題意,函數(shù)f(x)滿足f($\frac{1}{x}$)+$\frac{1}{x}$f(-x)=2x(x≠0),
令x=2可得:f($\frac{1}{2}$)+$\frac{1}{2}$f(-2)=4,①
令x=-$\frac{1}{2}$可得:f(-2)-2f($\frac{1}{2}$)=-1,②
聯(lián)立①②解可得:f(-2)=$\frac{7}{2}$,
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的值的計(jì)算,注意利用特殊值法分析,關(guān)鍵是分析$\frac{1}{x}$與(-x)的關(guān)系,確定x的特殊值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點(diǎn)(1,2)且與直線y=2x+1垂直的直線的方程為( 。
A.x+2y-3=0B.2x-y+4=0C.x+2y+3=0D.x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,離心率為$\frac{1}{2}$,點(diǎn)P為橢圓上一點(diǎn),且△PF1F2的周長為12,那么C的方程為( 。
A.$\frac{{x}^{2}}{25}$+y2=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{24}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l:$\sqrt{2}ρsin(θ\right.$$+\frac{π}{4})=t$=t經(jīng)過點(diǎn)$P({4\sqrt{2},\frac{π}{4}})$,曲線C:ρ2(1+3sin2θ)=4.
(Ⅰ)求直線l和曲線C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)Q為曲線C上任意一點(diǎn),且點(diǎn)Q到直線l的距離表示為d,求d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知曲線C:$\left\{\begin{array}{l}x=\frac{8k}{{1+{k^2}}}\\ y=\frac{{2(1-{k^2})}}{{1+{k^2}}}\end{array}\right.$(k為參數(shù))和直線l:$\left\{\begin{array}{l}x=2+tcosθ\\ y=1+tsinθ\end{array}\right.$(t為參數(shù)).
(1)將曲線C的方程化為普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),且P(2,1)為弦AB的中點(diǎn),求弦AB所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱柱ABC-A1B1C1中,平面A1ACC1⊥底面ABC,AB=BC=2,∠ACB=30°,∠C1CB=60°,BC1⊥A1C,E為AC的中點(diǎn),側(cè)棱CC1=2.
(1)求證:A1C⊥平面C1EB;
(2)求直線CC1與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,下列命題正確的是( 。
A.若m?α,n?α,且m、n是異面直線,那么n與α相交
B.若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β
C.若m?α,n?α,且m∥β,n∥β,則α∥β
D.若m∥α,n∥β,且α∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某市為了鼓勵(lì)市民節(jié)約用水,實(shí)行“階梯式”水價(jià),將該市每戶居民的月用水量劃分為三檔:月用水量不超過4噸的部分按2元/噸收費(fèi),超過4噸但不超過8噸的部分按4元/噸收費(fèi),超過8噸的部分按8元/噸收費(fèi).
(1)求居民月用水量費(fèi)用y(單位:元)關(guān)于月用水量x(單位:噸)的函數(shù)解析式;
(2)為了了解居民的用水情況,通過抽樣,獲得今年3月份100戶居民每戶的用水量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年3月份用水費(fèi)用不超過16元的占66%,求a,b的值;
(3)在滿足條件(2)的條件下,若以這100戶居民用水量的頻率代替該月全市居民用戶用水量的概率.且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.記為該市居民用戶3月份的用水費(fèi)用,求y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在極坐標(biāo)系中,點(diǎn)A($\sqrt{3}$,$\frac{π}{6}$)、B($\sqrt{3}$,$\frac{π}{2}$),直線l平行于直線AB,且將封閉曲線C:ρ=2cos(θ-$\frac{π}{3}$)(ρ≥0)所圍成的面積平分,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系
(Ⅰ)在直角坐標(biāo)系中,求曲線C及直線l的參數(shù)方程;
(Ⅱ)設(shè)點(diǎn)M為曲線C上的動(dòng)點(diǎn),求|MA|2+|MB|2的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案