14.在平面直角坐標系xOy中,橢圓C的中心為原點,焦點F1,F(xiàn)2在x軸上,離心率為$\frac{1}{2}$,點P為橢圓上一點,且△PF1F2的周長為12,那么C的方程為( 。
A.$\frac{{x}^{2}}{25}$+y2=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{24}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1

分析 由題意可得$\left\{\begin{array}{l}{2a+2c=12}\\{\frac{c}{a}=\frac{1}{2}}\end{array}\right.$,又b2=a2-c2.聯(lián)立解出即可得出橢圓C的方程.

解答 解:由題意可得$\left\{\begin{array}{l}{2a+2c=12}\\{\frac{c}{a}=\frac{1}{2}}\end{array}\right.$,又b2=a2-c2.解得a=4,c=2.
∴b2=a2-c2=12.∴橢圓C的方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$.
故選:D.

點評 本題考查了橢圓的定義標準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.設全集U={1,2,3,4},集合A={x|x2-5x+4<0,x∈Z},則∁UA={1,4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-ax-1-$\frac{{x}^{2}}{2}$,x∈R
(1)當a=2,求f(x)的圖象在點(0,f(0))處的切線方程;
(2)若對任意x≥0都有f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(xi,yi)(i=1,2,…,6),如表所示:
試銷單價x(元)456789
產(chǎn)品銷量y(件)q8483807568
已知$\overline y=\frac{1}{6}\sum_{i=1}^6{y_i}$=80.
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關關系,求產(chǎn)品銷量y(件)關于試銷單價x(元)的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(Ⅲ)用$\widehat{y_i}$表示用(Ⅱ)中所求的線性回歸方程得到的與xi對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)(xi,yi)對應的殘差的絕對值$|\widehat{y_i}-{y_i}|≤1$時,則將銷售數(shù)據(jù)(xi,yi)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求“好數(shù)據(jù)”個數(shù)ξ的分布列和數(shù)學期望E(ξ).
(參考公式:線性回歸方程中$\widehatb$,$\widehata$的最小二乘估計分別為$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設函數(shù)f'(x)是定義在(0,π)上的函數(shù)f(x)的導函數(shù),有f(x)sinx-f'(x)cosx<0,$a=\frac{1}{2}f(\frac{π}{3})$,b=0,$c=-\frac{{\sqrt{3}}}{2}f(\frac{5π}{6})$,則( 。
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.“x2+5x-6>0”是“x>2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.計算:log5100+log50.25的值是( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)滿足f($\frac{1}{x}$)+$\frac{1}{x}$f(-x)=2x(x≠0),則f(-2)=( 。
A.$-\frac{7}{2}$B.$\frac{9}{2}$C.$\frac{7}{2}$D.$-\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F(xiàn)為棱AB的中點.
(1)求證:CF⊥平面ABE;
(2)若直線DA與平面ABC所成的角為30°,求三棱錐D-BEF的體積.

查看答案和解析>>

同步練習冊答案