8.將5個人(含甲、乙)分成三個組,一組1人,另兩組各2人,不同的分組數(shù)為a,甲、乙分到同一組的概率為p,則a,p的值分別為( 。
A.$a=30,p=\frac{1}{10}$B.$a=30,p=\frac{1}{5}$C.$a=15,p=\frac{1}{10}$D.$a=15,p=\frac{1}{5}$

分析 本題是一道平均分組問題,將5個人(含甲、乙)分成三個組,一組1人,另兩組2人,有兩個組都是兩個人,而這兩個組又沒有區(qū)別,所以分組數(shù)容易重復(fù).

解答 解:a=$\frac{{C}_{5}^{1}{C}_{4}^{2}{C}_{2}^{2}}{2!}$=15.
甲、乙分在同一組的方法種數(shù)有3種,
所以P=$\frac{3}{15}$=$\frac{1}{5}$
故選D.

點評 平均分組問題是概率中最困難的問題,解題時往往會忽略有些情況是相同的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.由1,2,3,4,5,6組成沒有重復(fù)數(shù)字的六位數(shù),要求奇數(shù)不相鄰,且4不在第四位,則這樣的六位數(shù)共有( 。﹤.
A.72B.96C.120D.150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知O是銳角△ABC的外接圓圓心,A=$\frac{π}{6}$,D是BC邊上一點(D與B,C不重合),且|${\overrightarrow{AB}}$|2=|${\overrightarrow{AD}}$|2+$\overrightarrow{BD}$•$\overrightarrow{DC}$,若2m$\overrightarrow{BO}$=$\frac{cosA}{sinC}\overrightarrow{BA}$+$\frac{cosC}{sinA}\overrightarrow{BC}$,則m=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.(2x-$\frac{1}{\sqrt{x}}$)n二項展開式系數(shù)和為64,則展開式中的x3項的系數(shù)為240(結(jié)果用數(shù)字表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)整數(shù)m是從不等式x2-2x-8≤0的整數(shù)解的集合S中隨機抽取的一個元素,記隨機變量ξ=m2,則ξ的數(shù)學(xué)期望E(ξ)=(  )
A.1B.5C.$\frac{14}{7}$D.$\frac{16}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a、b∈R+,a+b=1,M=$\frac{{a}^{3}}{a+^{2}}$+$\frac{^{3}}{{a}^{2}+b}$,N=$\frac{^{3}}{a+^{2}}$+$\frac{{a}^{3}}{{a}^{2}+b}$,則M與N的大小關(guān)系是( 。
A.M>NB.M<NC.M=ND.M≤N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)當(dāng)E為AB的中點時,求AD1與平面ECD1所成角的正弦值;
(2)當(dāng)AE等于何值時,二面角D1-EC-D的大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sinx-ax,$ln2>sin\frac{1}{2},ln\frac{4}{π}<\frac{{\sqrt{2}}}{2}$.
(Ⅰ)對于x∈(0,1),f(x)>0恒成立,求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=0時,h(x)=x(lnx-1)-f′(x),證明h(x)存在唯一極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求下列函數(shù)的定義域和值域:
(1)y=2${\;}^{\frac{1}{x-4}}$;
(2)y=$\sqrt{1-(\frac{1}{2})^{x}}$.

查看答案和解析>>

同步練習(xí)冊答案