4.已知函數(shù)$f(x)=sin\frac{πx}{6}$,集合M={0,1,2,3,4,5,6,7,8},現(xiàn)從M中任取兩個(gè)不同元素m,n,則f(m)f(n)=0的概率為( 。
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{7}{18}$D.$\frac{7}{9}$

分析 對(duì)于m值,求出函數(shù)f(m)=0的值,然后用排列組合求出滿足f(m)•f(n)=0的個(gè)數(shù),
再求所有的基本事件數(shù),計(jì)算f(m)•f(n)=0時(shí)的概率.

解答 解:函數(shù)$f(x)=sin\frac{πx}{6}$,集合M={0,1,2,3,4,5,6,7,8},
現(xiàn)從M中任取兩個(gè)不同元素m,n,使f(m)•f(n)=0;
當(dāng)m=0或6時(shí),f(m)=sin$\frac{mπ}{6}$=0,
∴滿足f(m)•f(n)=0的個(gè)數(shù)為:
m=0時(shí)8個(gè),m=6時(shí)8個(gè);
n=0時(shí)8個(gè),n=6時(shí)8個(gè);
重復(fù)2個(gè),共有30個(gè);
又從A中任取兩個(gè)不同的元素m,n,則f(m)•f(n)的值有9×8=72個(gè),
∴函數(shù)f(x)從集合M中任取兩個(gè)不同的元素m,n,則f(m)•f(n)=0的概率為
P=$\frac{30}{72}$=$\frac{5}{12}$.
故選:A.

點(diǎn)評(píng) 本題考查概率的應(yīng)用以及排列組合的應(yīng)用問題,解題時(shí)應(yīng)注意不重不漏,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓O的半徑為定長(zhǎng)r,點(diǎn)A是平面內(nèi)一定點(diǎn)(不與O重合),P是圓O上任意一點(diǎn),線段AP的垂直平分線l和直線OP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡可能是下列幾種:①橢圓,②雙曲線,③拋物線,④直線,⑤點(diǎn)(  )
A.①②⑤B.①②③C.①④⑤D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a、b、c三個(gè)實(shí)數(shù)成等差數(shù)列,則直線bx+ay+c=0與拋物線${y^2}=-\frac{1}{2}x$的相交弦中點(diǎn)的軌跡方程是x+1=-(2y-1)2(y≠1)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若二項(xiàng)式${({{x^2}-\frac{2}{x}})^n}$展開式的二項(xiàng)式系數(shù)之和為8,則該展開式的系數(shù)之和為(  )
A.-1B.1C.27D.-27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.河南多地遭遇年霾,很多學(xué)校調(diào)整元旦放假時(shí)間,提前放假讓學(xué)生們?cè)诩叶泠玻嵵菔懈鶕?jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級(jí)為紅色預(yù)警的通知》,自12月29日12時(shí)將黃色預(yù)警升級(jí)為紅色預(yù)警,12月30日0時(shí)啟動(dòng)Ⅰ級(jí)響應(yīng),明確要求“幼兒園、中小學(xué)等教育機(jī)構(gòu)停課,停課不停學(xué)”.學(xué)生和家長(zhǎng)對(duì)停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的,某調(diào)查機(jī)構(gòu)為了了解公眾對(duì)該舉措的態(tài)度,隨機(jī)調(diào)查采訪了50人,將調(diào)查情況整理匯總成如表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻數(shù)510151055
贊成人數(shù)469634
(Ⅰ)請(qǐng)?jiān)趫D中完成被調(diào)查人員年齡的頻率分布直方圖;
(Ⅱ)若從年齡在[25,35),[65,75]兩組采訪對(duì)象中各隨機(jī)選取2人進(jìn)行深度跟蹤調(diào)查,選中4人中不贊成這項(xiàng)舉措的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若實(shí)數(shù)a,b,c滿足2a=$\frac{1}{a}$,log2b=$\frac{1}$,lnc=$\frac{1}{c}$,則(  )
A.a<c<bB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點(diǎn),E是AB的中點(diǎn),P是△ABC(包括邊界)內(nèi)任一點(diǎn),則$\overrightarrow{AD}$•$\overrightarrow{EP}$的取值范圍是[-9,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,直線l為4x-5y+40=0;直線l1為4x-5y+5=0,直線l2為4x-5y+m=0,l1與橢圓相交于A、B兩點(diǎn),求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)$f(x)=\frac{{3{x^2}+ax+26}}{x+1}$,若存在x∈N*使得f(x)≤2成立,則實(shí)數(shù)a的取值范圍為(-∞,-15].

查看答案和解析>>

同步練習(xí)冊(cè)答案