20.函數(shù)f(x)=lg(-x2+3x+10)的定義域?yàn)椋?2,5).

分析 根據(jù)對(duì)數(shù)成立的條件進(jìn)行求解即可.

解答 解:要使函數(shù)有意義,則-x2+3x+10>0,
即x2-3x-10<0,得-2<x<5,
即函數(shù)的定義域?yàn)椋?2,5),
故答案為:(-2,5).

點(diǎn)評(píng) 本題主要考查函數(shù)定義域的求解,根據(jù)對(duì)數(shù)函數(shù)以及一元二次不等式的解法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.不等式lnx+x-1<0的解集為( 。
A.$(0,\frac{e}{4})$B.$(0,\frac{e}{2})$C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.化簡(jiǎn):$\frac{1}{2}cos2αcos2β-{sin^2}α{sin^2}β-{cos^2}α{cos^2}β$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在△ABC,三內(nèi)角 A,B,C的對(duì)邊分別為a,b,c,已知A=30°,$b=\sqrt{3},a=1$,則c=1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某四棱錐的三視圖,則該幾何體的體積為( 。
A.15B.16C.$\frac{50}{3}$D.$\frac{53}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的外接球的體積為( 。
A.$\frac{4}{3}π$B.$\frac{{32\sqrt{3}}}{27}π$C.$\frac{{28\sqrt{3}}}{27}π$D.$\frac{{28\sqrt{21}}}{27}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)$y=sinx-\sqrt{3}cosx$的圖象可由函數(shù)$y=\sqrt{3}sinx+cosx$的圖象至少向右平移$\frac{π}{2}$個(gè)單位長(zhǎng)度得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.德國(guó)數(shù)學(xué)家科拉茨1937年提出一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即$\frac{n}{2}$);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則旅行變換后的第9項(xiàng)為1(注:1可以多次出現(xiàn)),則n的所有不同值的個(gè)數(shù)為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=cosxsin(x+\frac{π}{3})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)設(shè)g(x)=2af(x)+b,若g(x)在[-$\frac{π}{4}$,$\frac{π}{4}}$]上的值域?yàn)閇2,4],求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案