分析 令f(x)=$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$),則f(x-φ)=2sin(x+$\frac{π}{6}$-φ),依題意可得2sin(x+$\frac{π}{6}$-φ)=2sin(x-$\frac{π}{3}$),由$\frac{π}{6}$-φ=2kπ-$\frac{π}{3}$(k∈Z),可得答案.
解答 解:∵y=f(x)=$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$),y=sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$),
∴f(x-φ)=2sin(x+$\frac{π}{6}$-φ)(φ>0),
令2sin(x+$\frac{π}{6}$-φ)=2sin(x-$\frac{π}{3}$),
則$\frac{π}{6}$-φ=2kπ-$\frac{π}{3}$(k∈Z),
即φ=$\frac{π}{2}$-2kπ(k∈Z),
當(dāng)k=0時(shí),正數(shù)φmin=$\frac{π}{2}$,
故答案為:$\frac{π}{2}$.
點(diǎn)評 本題考查函數(shù)y=sinx的圖象變換得到y(tǒng)=Asin(ωx+φ)(A>0,ω>0)的圖象,由題意得到$\frac{π}{6}$-φ=2kπ-$\frac{π}{3}$(k∈Z)是關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 0個(gè)或1個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-2+\frac{3}{2}i$ | B. | $-2-\frac{3}{2}i$ | C. | $2+\frac{3}{2}i$ | D. | $2-\frac{3}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3a2+sina | B. | 3a2-sina | C. | sina | D. | cosa |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {0,2} | C. | {1,2} | D. | {1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com