4.已知函數(shù)f(x)=log4(ax2+2x+3),a∈R
(1)若f(x)的值域?yàn)閇$\frac{1}{2}$,+∞),求a;
(2)若f(x)在區(qū)間(-$\frac{1}{2}$,+∞)上是增加的,求a的取值范圍.

分析 (1)a=0時(shí),不合題意,得到a>0,得到關(guān)于x的不等式,根據(jù)二次函數(shù)的性質(zhì)求出a的范圍即可;
(2)根據(jù)復(fù)合函數(shù)的單調(diào)性得到關(guān)于a的不等式組,解出即可.

解答 解:(1)a=0時(shí),由2x+3>0,解得:x>-$\frac{3}{2}$,
顯然函數(shù)的值域是R,不合題意;
故a>0,由log4(ax2+2x+3)≥$\frac{1}{2}$,
得:ax2+2x+3≥2,即ax2+2x+1≥0,
故△=4-4a≤0,
解得:a≥1;
(2)若f(x)在區(qū)間(-$\frac{1}{2}$,+∞)上是增加的,
即y=ax2+2x+3在區(qū)間(-$\frac{1}{2}$,+∞)遞增,
故$\left\{\begin{array}{l}{a>0}\\{x=-\frac{2}{2a}≤-\frac{1}{2}}\\{{a(-\frac{1}{2})}^{2}+2×(-\frac{1}{2})+3≥0}\end{array}\right.$,解得:0<a≤2.

點(diǎn)評(píng) 本題考查二次函數(shù)的定義域、值域問題,考查復(fù)合函數(shù)的單調(diào)性,考查學(xué)生分析解決問題的能力,考查學(xué)生的計(jì)算能力,確定內(nèi)、外函數(shù)的單調(diào)性是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.五個(gè)人負(fù)責(zé)一個(gè)社團(tuán)的周一至周五的值班工作,每人一天,則甲同學(xué)不值周一,乙同學(xué)不值周五,且甲,乙不相鄰的概率是(  )
A.$\frac{3}{10}$B.$\frac{7}{20}$C.$\frac{2}{5}$D.$\frac{13}{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“若a>b,則a+c>b+c”的逆命題是(  )
A.若a>b,則a+c≤b+cB.若a+c≤b+c,則a≤bC.若a+c>b+c,則a>bD.若a≤b,則a+c≤b+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合$A=[(x,y)|\frac{x^2}{25}+\frac{y^2}{16}≤1],B=[(x,y)|\left\{\begin{array}{l}|x|≤m\\|y|≤n\end{array}\right.,0<m<5,0<n<4且(m,n)∈A]$,則集合∁AB對(duì)應(yīng)圖形面積取得最小值時(shí),m+n的值為(  )
A.$\frac{{9\sqrt{2}}}{2}$B.$5\sqrt{2}$C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.等比數(shù)列{an}的前n項(xiàng)、前2n項(xiàng)、前3n項(xiàng)之和分別為A、B、C.
(1)證明:A2+B2=A(B+C);
(2)若對(duì)任意n∈N*,A、B、C成等差數(shù)列,證明:{an}是常數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直角△ABC中,AB=3,AC=4,BC=5,I是△ABC的內(nèi)心,P是△IBC內(nèi)部(不含邊界)的動(dòng)點(diǎn),若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ,μ∈R),則λ+μ的取值范圍是(  )
A.($\frac{7}{12}$,1)B.($\frac{1}{3}$,1)C.($\frac{1}{4}$,$\frac{7}{12}$)D.($\frac{1}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線的方程是$y=\sqrt{3}x$,它的一個(gè)焦點(diǎn)落在拋物線y2=16x的準(zhǔn)線上,則雙曲線的方程為( 。
A.$\frac{x^2}{8}-\frac{y^2}{24}=1$B.$\frac{x^2}{24}-\frac{y^2}{8}=1$C.$\frac{x^2}{4}-\frac{y^2}{12}=1$D.$\frac{x^2}{12}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.自貢某個(gè)工廠于2016年下半年對(duì)生產(chǎn)工藝進(jìn)行了改造(每半年為一個(gè)生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如圖所示,已知每個(gè)生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤20元,生產(chǎn)一件合格品可獲利潤10元,生產(chǎn)一件次品要虧損10元.
(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤的分布列和期望;
(Ⅱ)是否有95%的把握認(rèn)為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關(guān)”.
附:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C:(x-6)2+y2=20,直線l:y=kx與圓C交于不同的兩點(diǎn)A、B.
(Ⅰ)求實(shí)數(shù)k的取值范圍;
(Ⅱ)若$\overrightarrow{OB}$=2$\overrightarrow{OA}$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案