15.下列函數(shù)既是奇函數(shù)又在定義域上單調(diào)遞增的是(  )
A.$f(x)=\frac{{{x^2}-2x}}{x-2}$B.f(x)=x-$\frac{1}{x}$C.f(x)=2x-2-xD.f(x)=x|sinx|

分析 根據(jù)函數(shù)單調(diào)性和奇偶性的定義判斷即可.

解答 解:對于選項A:f(x)=x,(x≠2),不是奇函數(shù);
選項B:f(x)為奇函數(shù),分別在(-∞,0)和(0,+∞)上單調(diào)遞增;
選項D:f(x)為奇函數(shù),因?yàn)閒(0)=f(π),所以在R上不是單調(diào)遞增;
故選:C.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性和奇偶性問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示的程序框圖中,輸出的B是(  )
A.$\sqrt{3}$B.0C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在斜三梭柱ABC-A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,E是棱AB上一點(diǎn),且OE∥平面BCC1B1
(1)求證:E是AB中點(diǎn);
(2)若AC1⊥A1B,求證:AC1⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知某企業(yè)的近3年的前7個月的月利潤(單位:百萬元)如下面的折線圖所示:

(1)試問這3年的前7個月中哪個月的月平均利潤較高?
(2)通過計算判斷這3年的前7個月的總利潤的發(fā)展趨勢;
(3)試以第3年的前4個月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第3年8月份的利潤.
月份x1234
利潤y(單位:百萬元)4466
相關(guān)公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.將函數(shù)y=sin2x的圖象向左平移φ(φ>0)個單位后與函數(shù)$y=cos(2x-\frac{π}{3})$的圖象重合,則φ的最小值為$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,-1),若$\overrightarrow$⊥($\overrightarrow{a}$+2$\overrightarrow$),則實(shí)數(shù)m等于(  )
A.2B.4C.6D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合M={x|x2≥x},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0},則有( 。
A.N⊆MB.M⊆∁RNC.M∩N=∅D.M∪N=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在△ABC中∠A、∠B均為銳角,sinA=$\frac{\sqrt{5}}{5}$,sinB=$\frac{\sqrt{10}}{10}$,
(1)求cos(A+B)
(2)求∠C的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案