17.實數(shù)a,b滿足0<a≤2,b≥1.若b≤a2,則$\frac{a}$的取值范圍是$[\frac{1}{2},2]$.

分析 利用換元法,結(jié)合條件,即可求出$\frac{a}$的取值范圍.

解答 解:設(shè)t=$\frac{a}$,則b=at,
∵b≤a2,∴at≤a2,∴t≤a,∴t≤2,
∵b≥1,∴at≥1,∴t≥$\frac{1}{a}$,∴t$≥\frac{1}{2}$,
∴$\frac{a}$的取值范圍是$[\frac{1}{2},2]$.
故答案為$[\frac{1}{2},2]$.

點評 本題考查不等式的性質(zhì),考查學生的計算能力,正確轉(zhuǎn)化是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)y=f(x),下列說法錯誤的是(  )
A.△y=f(x0+△x)-f(x0)叫函數(shù)值的改變量
B.$\frac{△y}{△x}$=$\frac{f({x}_{0}+△x)-f({x}_{0})}{△x}$叫該函數(shù)在[x0,x0+△x]上的平均變化率
C.f(x)在點x0處的導(dǎo)數(shù)記為y′
D.f(x)在點x0處的導(dǎo)數(shù)記為f′(x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若函數(shù)$f(x)=|{{{log}_a}x}|-{2^{-x}}({a>0,a≠1})$的兩個零點是m,n,則( 。
A.mn=1B.mn>1C.mn<1D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,點A(-2,0),B(2,0)分別為橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右頂點,P,M,N為橢圓C上非頂點的三點,直線AP,BP的斜率分別為k1,k2,且${k_1}{k_2}=-\frac{1}{4}$,AP∥OM,BP∥ON.
(1)求橢圓C的方程;
(2)判斷△OMN的面積是否為定值?若為定值,求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若實數(shù)x,y滿足:$\left\{{\begin{array}{l}{y≥2x-2}\\{y≥-x+1}\\{y≤x+1}\end{array}}\right.$,則z=3x-y的最大值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2-[x]•|x-1|,(0≤x<2)}\\{1,(x=2)}\end{array}\right.$,其中[x]表示不超過x的最大整數(shù).設(shè)n∈N*,定義函數(shù)fn(x):f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n≥2),則下列說法正確的有( 。﹤
①$y=\sqrt{x-f(x)}$的定義域為$[{\frac{2}{3},2}]$;
②設(shè)A={0,1,2},B={x|f3(x)=x,x∈A},則A=B;
③${f_{2016}}({\frac{8}{9}})+{f_{2017}}({\frac{8}{9}})=\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},則M中至少含有8個元素.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.等比數(shù)列{an}中,S6=120,a1+a3+a5=30,則q=( 。
A.2B.3C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.當a=16時,如圖的算法輸出的結(jié)果是(  )
A.9B.32C.10D.256

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=(2ax2+bx+1)•e-x(e為自然對數(shù)的底數(shù)).
(1)若$a=\frac{1}{2}$,b≥0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=1,且方程f(x)=1在(0,1)內(nèi)有解,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案