分析 先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)即可判斷函數(shù)的單調(diào)性;求出函數(shù)的最大值,再構(gòu)造函數(shù)(a)=lna+a-1,根據(jù)函數(shù)的單調(diào)性即可求出a的范圍.
解答 解:f(x)=lnx+a(1-x)的定義域?yàn)椋?,+∞),
∴f′(x)=$\frac{1}{x}$-a=$\frac{1-ax}{x}$,
若a≤0,則f′(x)>0,∴函數(shù)f(x)在(0,+∞)上單調(diào)遞增,不合題意;
若a>0,則當(dāng)x∈(0,$\frac{1}{a}$)時(shí),f′(x)>0,當(dāng)x∈($\frac{1}{a}$,+∞)時(shí),f′(x)<0,
所以f(x)在(0,$\frac{1}{a}$)上單調(diào)遞增,在($\frac{1}{a}$,+∞)上單調(diào)遞減,
故f(x)的最大值為f($\frac{1}{a}$)=-lna+a-1,
∵f($\frac{1}{a}$)>2a-2,
∴l(xiāng)na+a-1<0,
令g(a)=lna+a-1,
∵g(a)在(0,+∞)單調(diào)遞增,g(1)=0,
∴當(dāng)0<a<1時(shí),g(a)<0,
當(dāng)a>1時(shí),g(a)>0,
∴a的取值范圍為(0,1),
故答案為:(0,1).
點(diǎn)評 本題考查了導(dǎo)數(shù)與函數(shù)的單調(diào)性最值的關(guān)系,以及參數(shù)的取值范圍,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=cosx | B. | y=$\sqrt{x}$ | C. | y=2|x| | D. | y=|lgx| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 18 | C. | 24 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | c<a<b | C. | a<c<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [3,+∞) | B. | (3,+∞) | C. | (-∞,-1) | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $4\sqrt{5}$ | B. | $8\sqrt{5}$ | C. | $4\sqrt{15}$ | D. | $8\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com