5.一只小蟲在半徑為3的球內(nèi)自由飛行,若在飛行中始終保持與球面的距離大于1,稱為“安全距離”,則小蟲安全的概率為$\frac{8}{27}$.

分析 根據(jù)安全飛行的定義,則安全的區(qū)域為以球中心為球心,半徑為2的球的內(nèi)部,則概率為兩幾何體的體積之比,進而計算可得答案.

解答 解:由題意得安全的區(qū)域為以球中心為球心,半徑為2的球的內(nèi)部,
故p=$\frac{{\frac{4}{3}π•{2^3}}}{{\frac{4}{3}π•{3^3}}}=\frac{8}{27}$,
故答案為:$\frac{8}{27}$.

點評 本題主要考查幾何概型,基本方法是:分別求得構(gòu)成事件A的區(qū)域體積和試驗的全部結(jié)果所構(gòu)成的區(qū)域體積,兩者求比值,即為概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=lnx+a(1-x),當(dāng)f(x)有最大值,且最大值大于2a-2時,則a的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$,則z=x+2y的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知α,β均為銳角,且cos(α+β)=ncos(α-β),則tanαtanβ=( 。
A.$\frac{1-n}{1+n}$B.$\frac{1+n}{1-n}$C.$\frac{n-1}{1+n}$D.$\frac{1+n}{n-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若(1+i)2+|2i|=$\overline{z}$,其中z=a+bi(a,b∈R,i為虛數(shù)單位),則直線bx-ay+a=0的斜率為(  )
A.-1B.1C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z滿足(1+2i)z=3+iz,則復(fù)數(shù)z對應(yīng)的點所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),O是坐標(biāo)原點,F(xiàn)1,F(xiàn)2分別為其左右焦點,|F1F2|=2$\sqrt{3}$,M是橢圓上一點,∠F1MF2的最大值為$\frac{2}{3}$π
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C交于P,Q兩點,且OP⊥OQ
(i)求證:$\frac{1}{{{{|{OP}|}^2}}}+\frac{1}{{{{|{OQ}|}^2}}}$為定值;
(ii)求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.以$F(0,\frac{p}{2})(p>0)$為焦點的拋物線C的準(zhǔn)線與雙曲線x2-y2=2相交于M,N兩點,若△MNF為正三角形,則拋物線C的方程為( 。
A.${y^2}=2\sqrt{6}x$B.${y^2}=4\sqrt{6}x$C.${x^2}=2\sqrt{6}y$D.${x^2}=4\sqrt{6}y$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“a<-1”是“直線ax+y-3=0的傾斜角大于$\frac{π}{4}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案