分析 對函數(shù)求導y′=ex+e-x-3,由-$\frac{1}{2}$≤x≤$\frac{1}{2}$,利用基本不等式可求出導數(shù)的范圍,進而可求傾斜角的范圍.
解答 解:y′=ex+e-x-3,
∵-$\frac{1}{2}$≤x≤$\frac{1}{2}$,
∴0>ex+e-x-3≥$2\sqrt{{e}^{x}•{e}^{-x}}$-3=-1,當且僅當x=0時取等號,
即-1≤tanα<0,
∴$\frac{3π}{4}$≤α<π即傾斜角的最小值$\frac{3π}{4}$.
故答案為:$\frac{3π}{4}$.
點評 本題考查導數(shù)的幾何意義:導數(shù)在切點處的值是曲線的切線斜率,以及利用基本不等式求最值,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,9+4$\sqrt{2}$) | B. | (0,8+4$\sqrt{2}$) | C. | (1,1+2$\sqrt{2}$) | D. | (4,8) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{400}{3}$m | B. | $\frac{200}{3}$m | C. | 200$\sqrt{3}$m | D. | 100$\sqrt{3}$m |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com