【題目】已知雙曲線的右頂點(diǎn)為A,拋物線的焦點(diǎn)與點(diǎn)A重合.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)若直線l過點(diǎn)A且斜率為雙曲線的離心率,求直線l被拋物線截得的弦長.

【答案】(1) y24x;(2)5

【解析】

1)由雙曲線的標(biāo)準(zhǔn)方程得右頂點(diǎn)坐標(biāo),即拋物線焦點(diǎn)坐標(biāo),可求拋物線標(biāo)準(zhǔn)方程;

2)根據(jù)已知條件寫出直線方程,與拋物線方程聯(lián)立,結(jié)合拋物線的定義,即可求出過拋物線焦點(diǎn)的相交弦長.

1)由雙曲線,得a1,

∴拋物線的焦點(diǎn)即雙曲線的右頂點(diǎn)A為(1,0),

則拋物線的標(biāo)準(zhǔn)方程為y24x;

2)由雙曲線方程可得,a1,,

則直線l的斜率為2

∴直線l的方程為y2x1),即y2x2

聯(lián)立,得x23x+10,,

設(shè)兩交點(diǎn)橫坐標(biāo)分別為,則,

∴直線l被拋物線截得的弦長為x1+x2+p3+25

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,滿足(2bc)cosAacosC

1)求角A;

2)若,b+c5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是空氣質(zhì)量的一個(gè)重要指標(biāo),我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在以下空氣質(zhì)量為一級(jí),在之間空氣質(zhì)量為二級(jí),在以上空氣質(zhì)量為超標(biāo).如圖是某地日到日均值(單位:)的統(tǒng)計(jì)數(shù)據(jù),則下列敘述不正確的是(

A.日到日,日均值逐漸降低

B.天的日均值的中位數(shù)是

C.天中日均值的平均數(shù)是

D.從這天的日均監(jiān)測數(shù)據(jù)中隨機(jī)抽出一天的數(shù)據(jù),空氣質(zhì)量為一級(jí)的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲所示, 是梯形的高, , , ,現(xiàn)將梯形沿折起如圖乙所示的四棱錐,使得,點(diǎn)是線段上一動(dòng)點(diǎn).

(1)證明: 不可能垂直;

(2)當(dāng)時(shí),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年11月15日,我市召開全市創(chuàng)建全國文明城市動(dòng)員大會(huì),會(huì)議向全市人民發(fā)出動(dòng)員令,吹響了集結(jié)號(hào).為了了解哪些人更關(guān)注此活動(dòng),某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的100人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區(qū)間為:,,,,,.把年齡落在內(nèi)的人分別稱為“青少年人”和“中老年人”,經(jīng)統(tǒng)計(jì)“青少年人”與“中老年人”的人數(shù)之比為.

(1)求圖中的值,若以每個(gè)小區(qū)間的中點(diǎn)值代替該區(qū)間的平均值,估計(jì)這100人年齡的平均值;

(2)若“青少年人”中有15人關(guān)注此活動(dòng),根據(jù)已知條件完成題中的列聯(lián)表,根據(jù)此統(tǒng)計(jì)結(jié)果,問能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注此活動(dòng)?

關(guān)注

不關(guān)注

合計(jì)

青少年人

15

中老年人

合計(jì)

50

50

100

0.050

0.010

0.001

3.841

6.635

10.828

附參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓 ,長軸的右端點(diǎn)與拋物線 的焦點(diǎn)重合,且橢圓的離心率是

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過作直線交拋物線, 兩點(diǎn),過且與直線垂直的直線交橢圓于另一點(diǎn),求面積的最小值,以及取到最小值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知過點(diǎn)的橢圓的離心率為,左頂點(diǎn)和上頂點(diǎn)分別為A,B

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若P為線段OD延長線上一點(diǎn),直線PA交橢圓于另一點(diǎn)E,直線PB交橢圓于另一點(diǎn)Q

①求直線PAPB的斜率之積;

②判斷直線ABEQ是否平行?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們知道,地球上的水資源有限,愛護(hù)地球、節(jié)約用水是我們每個(gè)人的義務(wù)和責(zé)任.某市政府為了對(duì)自來水的使用進(jìn)行科學(xué)管理,節(jié)約水資源,計(jì)劃確定一個(gè)家庭年用水量的標(biāo)準(zhǔn),為此,對(duì)全市家庭日常用水的情況進(jìn)行抽樣調(diào)查,并獲得了個(gè)家庭某年的用水量(單位:立方米),統(tǒng)計(jì)結(jié)果如下表所示.

(Ⅰ)分別求出的值;

(Ⅱ)若以各組區(qū)間中點(diǎn)值代表該組的取值,試估計(jì)全市家庭平均用水量;

(Ⅲ)從樣本中年用水量在(單位:立方米)的個(gè)家庭中任選個(gè),作進(jìn)一步跟蹤研究,求年用水量最多的家庭被選中的概率(個(gè)家庭的年用水量都不相等).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極坐標(biāo)建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

的普通方程;

將圓平移,使其圓心為,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)關(guān)于原點(diǎn)對(duì)稱,線段的垂直平分線與相交于點(diǎn),求的軌跡的參數(shù)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案