【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極坐標(biāo)建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
求的普通方程;
將圓平移,使其圓心為,設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)與關(guān)于原點(diǎn)對(duì)稱,線段的垂直平分線與相交于點(diǎn),求的軌跡的參數(shù)方程.
【答案】(1);(2)(為參數(shù))
【解析】
(1)利用,將極坐標(biāo)方程轉(zhuǎn)化為普通方程;
(2)根據(jù)垂直平分線性質(zhì)得到,則,為定值,可以得到點(diǎn)軌跡,再將其轉(zhuǎn)化成參數(shù)方程.
根據(jù)題意,的圓心為,半徑為,故的普通方程為
(圓心分,半徑分,準(zhǔn)確寫(xiě)出方程分)或
由兩邊同乘以,得.
則.
即的普通方程為.
連接,由垂直平分線的性質(zhì)可知.
所以,點(diǎn)的軌跡是以為焦點(diǎn)(焦距為),長(zhǎng)軸為的橢圓.
由上,該橢圓的短半軸長(zhǎng)為.
故可得的軌跡的參數(shù)方程為(為參數(shù))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的右頂點(diǎn)為A,拋物線的焦點(diǎn)與點(diǎn)A重合.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若直線l過(guò)點(diǎn)A且斜率為雙曲線的離心率,求直線l被拋物線截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:存在x0∈R,使;命題q:對(duì)任意x∈R,mx2+mx+1>0;若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,過(guò)橢圓的焦點(diǎn)且與長(zhǎng)軸垂直的弦長(zhǎng)為1.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動(dòng)點(diǎn),A,B分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MB與x軸交于點(diǎn)C,直線MA與y軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為及以上的花苗為優(yōu)質(zhì)花苗.
求圖中的值,并求綜合評(píng)分的中位數(shù).
用樣本估計(jì)總體,以頻率作為概率,若在兩塊試驗(yàn)地隨機(jī)抽取棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
填寫(xiě)下面的列聯(lián)表,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
附:下面的臨界值表僅供參考.
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn).
(1)證明:面;
(2)證明:面面;
(3)求直線與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,過(guò)坐標(biāo)原點(diǎn)的直線交于,兩點(diǎn),點(diǎn)在第一象限,軸,垂足為.連結(jié)并延長(zhǎng)交于點(diǎn).
(1)設(shè)到直線的距離為,求的取值范圍;
(2)求面積的最大值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩陣()滿足(I為單位矩陣).
(1)求m的值;
(2)設(shè),.矩陣變換可以將點(diǎn)P變換為點(diǎn)Q.當(dāng)點(diǎn)P在直線上移動(dòng)時(shí),求經(jīng)過(guò)矩陣A變換后點(diǎn)Q的軌跡方程.
(3)是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線上?若存在,求出所有這樣的直線;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,拋物線焦點(diǎn)均在x軸上,的中心和頂點(diǎn)均在原點(diǎn)O,從每條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中,則的左焦點(diǎn)到的準(zhǔn)線之間的距離為( )
3 | -2 | 4 | ||
0 | -4 |
A.B.C.1D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com