17.已知f(x)=x2sinx,則$f'(\frac{π}{2})$=(  )
A.$\frac{π^2}{2}$B.$-\frac{π^2}{2}$C.$-\frac{π^2}{4}$D.π

分析 根據(jù)導(dǎo)數(shù)的計(jì)算法則計(jì)算即可.

解答 解:∵f(x)=x2sinx,
∴f′(x)=2xsinx+x2cosx,
∴f′($\frac{π}{2}$)=2×$\frac{π}{2}$sin$\frac{π}{2}$+0=π
故選:D.

點(diǎn)評(píng) 本題考查了利用求導(dǎo)法則求函數(shù)的導(dǎo)函數(shù)問(wèn)題,是基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,設(shè)F是橢圓$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1的下焦點(diǎn),直線y=kx-4(k>0)與橢圓相交于A、B兩點(diǎn),與y軸交于點(diǎn)P
(1)若$\overrightarrow{PA}$=$\overrightarrow{AB}$,求k的值;
(2)求證:∠AFP=∠BF0;
(3)求面積△ABF的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等差數(shù)列{an}的前15項(xiàng)之和為$\frac{15π}{4}$,則tan(a7+a8+a9)=( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上增函數(shù),則稱f(x)為“二階比增函數(shù)”.
我們把所有“一階比增函數(shù)”組成的集合記為A,所有“二階比增函數(shù)”組成的集合記為B.
(1)設(shè)函數(shù)f(x)=ax3-2(a-2)x2+(a-1)x(x>0,a∈R)
①求證:當(dāng)a=0時(shí),f(x)∈A∩B;
②若f(x)∈A,且f(x)∉B,求實(shí)數(shù)a的取值范圍.
(2)對(duì)定義在(0,+∞)上的函數(shù)f(x),若f(x)∈B,且存在常數(shù)k使得?x∈(0,+∞),f(x)<k,求證:f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知:
1+$\frac{1}{2}$=$\frac{3}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$>2
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$>$\frac{5}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$+$\frac{1}{9}$+…+$\frac{1}{16}$>3

以此類推,寫出一般的結(jié)論并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.把“二進(jìn)制”數(shù)1011001(2)化為“六進(jìn)制”數(shù)是225(6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.P為雙曲線x2-$\frac{{y}^{2}}{3}$=1的漸近線位于第一象限上的一點(diǎn),若點(diǎn)P到該雙曲線左焦點(diǎn)的距離為2$\sqrt{3}$,則點(diǎn)P到其右焦點(diǎn)的距離為( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某校老年、中年和青年教師的人數(shù)分別為900、1800、1600,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中,青年教師有240人,則該樣本的老年教師人數(shù)為135.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)M={1,2},N={a,b},a,b∈R,若M=N,則2a+b=4或5.

查看答案和解析>>

同步練習(xí)冊(cè)答案