13.在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$),直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=a,且點(diǎn)A在直線l上.
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的極坐標(biāo)方程為ρ=2cosα,試判斷直線l與圓C的位置關(guān)系.

分析 (1)由點(diǎn)A在直線l上,代入可得$\sqrt{2}$cos($\frac{π}{4}$-$\frac{π}{4}$)=a,解得a.由ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$,展開(kāi)化為:$\frac{\sqrt{2}}{2}ρ(cosθ+sinθ)$=$\sqrt{2}$,利用互化公式即可得出.
(2)圓C的極坐標(biāo)方程為ρ=2cosα,即ρ2=2ρcosα,化為:(x-1)2+y2=1.可得圓心,半徑,求出圓心到直線的距離d,與半徑r比較大小關(guān)系,即可得出.

解答 解:(1)由點(diǎn)A在直線l上,∴$\sqrt{2}$cos($\frac{π}{4}$-$\frac{π}{4}$)=a,解得a=$\sqrt{2}$.
ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$,展開(kāi)化為:$\frac{\sqrt{2}}{2}ρ(cosθ+sinθ)$=$\sqrt{2}$,
從而直線l的直角坐標(biāo)方程為:x+y-2=0.
(2)圓C的極坐標(biāo)方程為ρ=2cosα,即ρ2=2ρcosα,
化為:x2+y2=2x,配方為:(x-1)2+y2=1.
∴圓心為(1,0),半徑r=1,
∴為圓心到直線的距離d=$\frac{|1+0-2|}{\sqrt{2}}$=$\frac{1}{\sqrt{2}}$<1.
所以直線與圓相交.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)$f(x)=\frac{2}{{{e^x}+1}}+sinx$,其導(dǎo)函數(shù)記為f′(x),則f(2016)+f(-2016)+f′(2016)-f′(-2016)的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,an+1=2an+1.
(Ⅰ)求a2,a3,a4,a5;
(Ⅱ)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知a,b,c分別是△ABC內(nèi)角A,B,C的對(duì)邊,點(diǎn)G是△ABC的重心,若A=$\frac{π}{3}$,$\overrightarrow{AB}•\overrightarrow{AC}$=6,|$\overrightarrow{AG}$|=2,則△ABC一定是( 。
A.直角三角形B.等腰直角三角形C.正三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.執(zhí)行如圖的程序輸出的結(jié)果是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖是容量為n的樣本的頻率分布直方圖,已知樣本數(shù)據(jù)在[14,18)內(nèi)的頻數(shù)是12,則樣本數(shù)據(jù)落在[6,10)的頻數(shù)是( 。
A.12B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)常數(shù)a>0,λ∈R,函數(shù)f(x)=x2(x-a)-λ(x+a)3,若函數(shù)f(x)恰有兩個(gè)零點(diǎn),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列不等式中,解集為R的是( 。
A.x2+4x+4>0B.|x|>0C.x2>-xD.x2-x+$\frac{1}{4}$≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=sinx-x,則關(guān)于a的不等式f(a-2)+f(a2-4)>0的解是-3<a<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案