分析 (1)根據(jù)題意,若f(2)≥0,則|2-a|+1+2a≥0,用零點分段討論法分析可得$\left\{\begin{array}{l}{a≥2}\\{(a-2)+2a+1≥0}\end{array}\right.$或$\left\{\begin{array}{l}{a<2}\\{(2-a)+2a+1≥0}\end{array}\right.$,解可得a的取值范圍,即可得答案;
(2)分析可得存在x∈R使得不等式f(x)<0成立,即有f(x)min<0,即可得|a-1|+2a<0,解可得a的取值范圍,即可得答案.
解答 解:(1)根據(jù)題意,若f(2)≥0,則|2-a|+1+2a≥0,
則有$\left\{\begin{array}{l}{a≥2}\\{(a-2)+2a+1≥0}\end{array}\right.$或$\left\{\begin{array}{l}{a<2}\\{(2-a)+2a+1≥0}\end{array}\right.$,
解可得a≥2或-3≤a<2,
所以a≤-3,
即a的取值范圍是[-3,+∞);
(2)存在x∈R使得不等式f(x)<0成立,即有f(x)min<0,
f(x)=|x-a|+|x-1|+2a≥|a-1|+2a,即f(x)的最小值為|a-1|+2a,
則有|a-1|+2a<0,
則有$\left\{\begin{array}{l}{1-a+2a<0}\\{a<1}\end{array}\right.$或$\left\{\begin{array}{l}{a-1+2a<0}\\{a≥1}\end{array}\right.$,
解可得a<-1,
故a的取值范圍是(-∞,-1).
點評 本題主要考查絕對值不等式的解法,函數(shù)的恒成立問題,體現(xiàn)了轉(zhuǎn)化以及分類討論的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
分數(shù)大于等于120分 | 分數(shù)不足120分 | 合 計 | |
周做題時間不少于15小時 | 4 | 22 | |
周做題時間不足15小時 | |||
合 計 | 50 |
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AD}$=-$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{5}{4}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AD}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ln(cosx) | B. | cos(lnx) | C. | -$\frac{1}{x}$cos(lnx) | D. | $\frac{1}{x}$cos(lnx) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-6,4) | B. | [4,6) | C. | (5,6)∪{4} | D. | [5,6)∪{4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com