A. | $\frac{{e}^{2}-1}{{e}^{2}+1}$ | B. | $\frac{2}{{e}^{2}+1}$ | C. | $\frac{{e}^{2}+1}{{e}^{2}-1}$ | D. | $\frac{1-{e}^{2}}{1+{e}^{2}}$ |
分析 由F(x)=g(x)+h(x)及g(x),h(x)的奇偶性可求得g(x),h(x),進(jìn)而可把mg(x)+h(x)≥0表示出來,分離出參數(shù)后,求函數(shù)的最值問題即可解決.
解答 解:由f(x)=g(x)-h(x),即ex=g(x)-h(x)①,得e-x=g(-x)-h(-x),
又g(x),h(x)分別為偶函數(shù)、奇函數(shù),所以e-x=g(x)+h(x)②,
聯(lián)立①②解得,g(x)=$\frac{1}{2}$(ex+e-x),h(x)=$\frac{1}{2}$(ex-e-x).
mg(x)+h(x)≥0,即m•$\frac{1}{2}$(ex+e-x)+$\frac{1}{2}$(ex-e-x)≥0,也即m≥$\frac{{e}^{-x}-{e}^{x}}{{e}^{x}+{e}^{-x}}$,即m≥1-$\frac{2}{1+{e}^{-2x}}$
∵存在實數(shù)m,當(dāng)x∈[-1,1]時,不等式mg(x)+h(x)≥0成立,1-$\frac{2}{1+{e}^{-2x}}$≥$\frac{{e}^{2}-1}{{e}^{2}+1}$,∴m≥$\frac{{e}^{2}-1}{{e}^{2}+1}$.
∴m的最小值為$\frac{{e}^{2}-1}{{e}^{2}+1}$.
故選A.
點評 本題考查函數(shù)的奇偶性、單調(diào)性及函數(shù)恒成立問題,考查學(xué)生綜合運用所學(xué)知識分析問題解決問題的能力,本題綜合性強,難度大.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最小正周期為π的偶函數(shù) | B. | 最小正周期為2π的奇函數(shù) | ||
C. | 最小正周期為π的奇函數(shù) | D. | 最小正周期為2π的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{7}{12}$,1) | B. | ($\frac{1}{3}$,1) | C. | ($\frac{1}{4}$,$\frac{7}{12}$) | D. | ($\frac{1}{4}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 數(shù)列{an}是單調(diào)遞增數(shù)列,數(shù)列{bn}是單調(diào)遞減數(shù)列 | |
B. | 數(shù)列{an+bn}是等比數(shù)列 | |
C. | 數(shù)列$\{\frac{a_n}{b_n}\}$有最小值,無最大值 | |
D. | 若△ABC中,C=90°,CA=CB,則$|\overrightarrow{{B_n}{A_n}}|$最小時,${a_n}+{b_n}=\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | -$\frac{13}{4}$ | D. | -$\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com