16.若a,b∈{1,2,3,…,11},構(gòu)造方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,則該方程表示的曲線為落在矩形區(qū)域{(x,y)||x|<11,|y|<9}內(nèi)的橢圓的概率是$\frac{72}{121}$.

分析 求出滿足題意的橢圓個數(shù),即可求出概率.

解答 解:橢圓落在矩形內(nèi),滿足題意必須有,a≠b,所以有兩類,
一類是a,b從{1,2,3,…6,7,8}任選兩個不同數(shù)字,方法有A82=56
一類是a從9,10,兩個數(shù)字中選一個,b從{1,2,3,…6,7,8}中選一個
方法是:2×8=16
所以滿足題意的橢圓個數(shù)是:56+16=72,
所以所求概率為$\frac{72}{121}$,
故答案為$\frac{72}{121}$.

點評 本題考查古典概型,考查二元一次不等式(組)與平面區(qū)域,橢圓的定義,組合知識,考查學生分析問題解決問題的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.圓心在直線2x-y=0上的圓C與x軸的正半軸相切,圓C截y軸所得的弦的長為2$\sqrt{3}$,則圓C的標準方程為(x-1)2+(y-2)2=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若函數(shù)f(x)是定義在R上的偶函數(shù),g(x)是定義在R上的奇函數(shù),則下列敘述正確的是(  )
A.f(x)+g(x)為偶函數(shù)B.f(x)g(x)為奇函數(shù)C.xf(x)-xg(x)為偶函數(shù)D.f(|x|)+xg(x)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知命題p:方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{6-m}$=1表示焦點在x軸上的橢圓;命題q:雙曲線$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的離心率e∈($\frac{\sqrt{6}}{2}$,$\sqrt{2}$).若命題“p∨q”為真命題,“p∧q”為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.對于任意實數(shù)a,b,c,d以下四個命題中,其中正確的有( 。
①ac2>bc2,則a>b,
②若a>b,c>d,則a+c>b+d;
③若a>b,c>d,則ac>bd;
④若a>b,則$\frac{1}{a}<\frac{1}$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若關于x的不等式x2+2x-k>0的解集為R,則實數(shù)k的取值范圍是( 。
A.{k|k≤-1或k≥1}B.{k|-1<k<1}C.{k|k<-1}D.{k|k≤-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中,正確的是( 。
A.若a>b,c>d,則a>cB.若ac>bc,則a>b
C.若$\frac{a}{{c}^{2}}$<$\frac{{c}^{2}}$,則a<bD.若a>b,c>d,則ac>bd

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某商品在近30天內(nèi)每件的銷售價格p(元)與時間t(天)的函數(shù)關系是$p=\left\{\begin{array}{l}t+20,0<t<25,t∈N\\-t+100,25≤t≤30,t∈N\end{array}\right.$,該商品的日銷售量Q(件)與時間t(天)的函數(shù)關系是Q=-t+40(0<t≤30,t∈N).
(1)求這種商品的日銷售金額的解析式;
(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天的第幾天?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設k∈R,則函數(shù)f(x)=sin(kx+$\frac{π}{6}$)+k的部分圖象不可能是( 。
A.B.
C.D.

查看答案和解析>>

同步練習冊答案