分析 設(shè)圓心(t,2t),由題意可得半徑r=2|t|,求出圓心到直線的距離d,再由4t2=t2+3,解得t的值,從而得到圓心坐標(biāo)和半徑,由此求出圓的方程.
解答 解:設(shè)圓心(t,2t)(t>0),則由圓與x軸相切,可得半徑r=2|t|.
∵圓心到y(tǒng)軸的距離d=t,
由圓C截y軸所得的弦的長為2$\sqrt{3}$,4t2=t2+3
解得t=1.
故圓心為(1,2),半徑等于2.
故圓C的方程為(x-1)2+(y-2)2=4.
故答案為(x-1)2+(y-2)2=4.
點評 本題主要考查求圓的標(biāo)準(zhǔn)方程的方法,求出圓心坐標(biāo)和半徑的值,是解題的關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 100 |
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}π$ | B. | 4$\sqrt{3}$π | C. | $\frac{4\sqrt{3}}{3}$π | D. | 8$\sqrt{3}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com