已知集合A={x|x2-2x-3=0},集合B={x|mx+1=0},若B⊆A,則實數(shù)m的集合為( 。
A、{-
1
3
}
B、{1}
C、{-
1
3
,1}
D、{0,-
1
3
,1}
考點:集合的包含關(guān)系判斷及應用
專題:計算題,集合
分析:由題意,化簡A={x|x2-2x-3=0}={-1,3},結(jié)合方程mx+1=0可知B為∅,{-1},{3},從而解得.
解答: 解:A={x|x2-2x-3=0}={-1,3},
①若m=0,則B=∅,成立;
②若-m+1=0,則m=1;
③若3m+1=0,則m=-
1
3

故選D.
點評:本題考查了集合的包含關(guān)系的應用,同時考查了分類討論的數(shù)學思想,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC中點.
(1)求證:B1C∥平面A1BD;
(2)求點B1到平面A1BD的距離;
(3)求二面角A1-DB-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

6
3+t
=
1
t+1
+
2m-1
2m-1+t
,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:“a+2b=0”是“直線ax+2y+3=0和直線x+by+2=0互相垂直”的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:sin2α+sin2β-sin2αcos2β-cos2αsin2β=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=alnx-bx2,a,b∈R(1)若函數(shù)f(x)在x=1處與直線y=-
1
2
相切; 
①求實數(shù)a,b的值;      
②求函數(shù)f(x)在[
1
e
,e]上的最大值;
③當b=0時,若不等式f(x)≥m+x對所有的a∈[0,
3
2
],x∈(1,e2]都成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=
7

(1)求
AD
AC
;
(2)若
AD
AC
=0,
BA
BC
=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以A表示值域為R的函數(shù)組成的集合,B表示具有如下性質(zhì)的函數(shù)φ(x)組成的集合:對于函數(shù)φ(x),存在一個正數(shù)M,使得函數(shù)φ(x)的值域包含于區(qū)間[-M,M].例如,當φ1(x)=x3,φ2(x)=sin x時,φ1(x)∈A,φ2(x)∈B.現(xiàn)有如下命題:
①設(shè)函數(shù)f(x)的定義域為D,則“f(x)∈A”的充要條件是“?b∈R,?a∈D,f(a)=b”;
②函數(shù)f(x)∈B的充要條件是f(x)有最大值和最小值;
③若函數(shù)f(x),g(x)的定義域相同,且f(x)∈A,g(x)∈B,則f(x)+g(x)∉B;
④若函數(shù)f(x)=aln(x+2)+
x
x2+1
(x>-2,a∈R)有最大值,則f(x)∈B;
⑤若函數(shù)f(x)=ln(x2+a)∈A,則a>0.
其中的真命題有( 。
A、①③④⑤B、②③④⑤
C、①③⑤D、①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的主視圖和左視圖都是邊長為2的等邊三角形,俯視圖如圖所示,則這個幾何體的體積為
 

查看答案和解析>>

同步練習冊答案