17.雙曲線mx2-y2=1(m∈R)與橢圓$\frac{x^2}{5}+{y^2}=1$有相同的焦點(diǎn),則該雙曲線的漸近線方程為( 。
A.$y=±\sqrt{3}x$B.$y=±\frac{{\sqrt{3}}}{3}x$C.$y=±\frac{1}{3}x$D.y=±3x

分析 根據(jù)題意,由橢圓的方程可得橢圓的焦點(diǎn)坐標(biāo),將雙曲線的方程變形為標(biāo)準(zhǔn)方程$\frac{{x}^{2}}{\frac{1}{m}}$-y2=1,結(jié)合其焦點(diǎn)坐標(biāo),可得$\frac{1}{m}$+1=4,解可得m的值,即可得雙曲線的方程,由漸近線方程計(jì)算可得答案.

解答 解:根據(jù)題意,橢圓的方程為:$\frac{x^2}{5}+{y^2}=1$,
其焦點(diǎn)在x軸上,且c=$\sqrt{5-1}$=2,
則其焦點(diǎn)坐標(biāo)為(±2,0),
對(duì)于雙曲線mx2-y2=1,變形可得$\frac{{x}^{2}}{\frac{1}{m}}$-y2=1,
若其焦點(diǎn)為(±2,0),則有$\frac{1}{m}$+1=4,
解可得m=$\frac{1}{3}$,
即雙曲線的方程為$\frac{{x}^{2}}{3}$-y2=1,則其漸近線方程為y=±$\frac{\sqrt{3}}{3}$x;
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出m的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,經(jīng)過(guò)點(diǎn)($\sqrt{3}$,$\frac{1}{2}$)
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)M(-1,0)作直線交橢圓于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),求△OAB的面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=$\frac{1}{(x+1)ln(x+1)}$(x>-1且x≠0)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)值域
(3)已知2${\;}^{\frac{1}{x+1}}$>(x+1)m對(duì)任意x∈(-1,0)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.以下四個(gè)命題中,其中真命題的個(gè)數(shù)為( 。
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②對(duì)于命題p:?x∈R,使得x2+x+1<0.則¬p:?x∈R,均勻x2+x+1≥0
③“x<0”是“l(fā)n(x+1)<0”的充分不必要條件;
④“若x+y=0,則x,y互為相反數(shù)”的逆命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$tan({α-β})=\frac{{\sqrt{2}}}{2},tanβ=-\frac{{\sqrt{2}}}{2}$,則tan(α-2β)=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若0<a<2,0<b<2,則函數(shù)$f(x)=\frac{1}{3}{x^3}+\sqrt{a}{x^2}+2bx-3$存在極值的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線C上的一點(diǎn),若$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|=\sqrt{{{|{\overrightarrow{P{F_1}}}|}^2}+{{|{\overrightarrow{P{F_2}}}|}^2}}$,$|{\overrightarrow{P{F_1}}}|=2|{\overrightarrow{P{F_2}}}|$,則雙曲線C的離心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在區(qū)間[2,10]上任取一個(gè)數(shù),這個(gè)數(shù)在區(qū)間[5,7]上的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)g(x)=|x|+2|x+2-a|(a∈R).
(1)當(dāng)a=3時(shí),解不等式g(x)≤4;
(2)令f(x)=g(x-2),若f(x)≥1在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案