【題目】已知函數(shù).

(1)當(dāng),時(shí),求滿足的值;

(2)若函數(shù)是定義在上的奇函數(shù).

①存在,使得不等式有解,求實(shí)數(shù)的取值范圍;

②若函數(shù)滿足,若對(duì)任意,不等式恒成立,求實(shí)數(shù)的最大值.

【答案】(1);(2)①;②.

【解析】分析:(1)把,代入,求解即可得答案.

(2)①函數(shù)是定義在上的奇函數(shù),得,代入原函數(shù)求解得的值,判斷函數(shù)為單調(diào)性,由函數(shù)的單調(diào)性可得的取值范圍.

②由,求得函數(shù),代入,化簡(jiǎn)后得恒成立,令,,參數(shù)分離得時(shí)恒成立,由基本不等即可求得的最大值.

詳解:解:(1)因?yàn)?/span>,所以,

化簡(jiǎn)得,解得(舍)或,

所以.

(2)因?yàn)?/span>是奇函數(shù),所以,所以

化簡(jiǎn)變形得:,

要使上式對(duì)任意的成立,則,

解得:,因?yàn)?/span>的定義域是,所以舍去,

所以,所以.

對(duì)任意,,有:

因?yàn)?/span>,所以,所以,

因此上遞增,

因?yàn)?/span>,所以,

時(shí)有解,

當(dāng)時(shí),,所以.

②因?yàn)?/span>,所以

所以,

不等式恒成立,即,

,,則時(shí)恒成立,

因?yàn)?/span>,由基本不等式可得:,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,

所以,則實(shí)數(shù)的最大值為.

奇偶性

單調(diào)性

轉(zhuǎn)化不等式

奇函數(shù)

區(qū)間上單調(diào)遞增

區(qū)間上單調(diào)遞減

偶函數(shù)

對(duì)稱區(qū)間上左減右增

對(duì)稱區(qū)間上左增右減

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖為函數(shù)的部分圖象,、是它與軸的兩個(gè)交點(diǎn),、分別為它的最高點(diǎn)和最低點(diǎn),是線段的中點(diǎn),且為等腰直角三角形.

1)求的解析式;

2)將函數(shù)圖象上的每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的一半,再向左平移個(gè)單位長(zhǎng)度得到的圖象,求的解析式及單調(diào)增區(qū)間,對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知底面為菱形,,為對(duì)角線的交點(diǎn),底面

(1)求異面直線所成角的余弦值;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中, .

(1)當(dāng) 為自然對(duì)數(shù)的底)時(shí),討論的單調(diào)性;

(2)當(dāng) 時(shí),若函數(shù)存在最大值,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是以,為焦點(diǎn)的雙曲線上的一點(diǎn),且,則的周長(zhǎng)為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織了地理知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出40名學(xué)生,將其成績(jī)(均為整數(shù))分成六組,,…,,其部分頻率分布直方圖如圖所示.觀察圖形,回答下列問題.

1)求成績(jī)?cè)?/span>的頻率,并補(bǔ)全這個(gè)頻率分布直方圖:

2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分;(計(jì)算時(shí)可以用組中值代替各組數(shù)據(jù)的平均值)

3)從成績(jī)?cè)?/span>的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出與下列各角終邊相同的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來:

(1)60°; (2)-21°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《周易》中,長(zhǎng)橫“”表示陽爻,兩個(gè)短橫“”表示陰爻.有放回地取陽爻和陰爻三次合成一卦,共有種組合方法,這便是《系辭傳》所說“太極生兩儀,兩儀生四象,四象生八卦”.有放回地取陽爻和陰爻一次有2種不同的情況,有放回地取陽爻和陰爻兩次有四種情況,有放回地取陽爻和陰爻三次,八種情況.所謂的“算卦”,就是兩個(gè)八卦的疊合,即共有放回地取陽爻和陰爻六次,得到六爻,然后對(duì)應(yīng)不同的解析.在一次所謂“算卦”中得到六爻,這六爻恰好有三個(gè)陽爻三個(gè)陰爻的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題16分)某鄉(xiāng)鎮(zhèn)為了進(jìn)行美麗鄉(xiāng)村建設(shè),規(guī)劃在長(zhǎng)為10千米的河流OC的一側(cè)建一條觀光帶,觀光帶的前一部分為曲線段OAB,設(shè)曲線段OAB為函數(shù),(單位:千米)的圖象,且曲線段的頂點(diǎn)為;觀光帶的后一部分為線段BC,如圖所示.

(1)求曲線段OABC對(duì)應(yīng)的函數(shù)的解析式;

(2)若計(jì)劃在河流OC和觀光帶OABC之間新建一個(gè)如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQQP, PN構(gòu)成,其中點(diǎn)P在線段BC上.當(dāng)OM長(zhǎng)為多少時(shí),綠化帶的總長(zhǎng)度最長(zhǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案