【題目】(本題16分)某鄉(xiāng)鎮(zhèn)為了進(jìn)行美麗鄉(xiāng)村建設(shè),規(guī)劃在長為10千米的河流OC的一側(cè)建一條觀光帶,觀光帶的前一部分為曲線段OAB,設(shè)曲線段OAB為函數(shù)(單位:千米)的圖象,且曲線段的頂點(diǎn)為;觀光帶的后一部分為線段BC,如圖所示.

(1)求曲線段OABC對(duì)應(yīng)的函數(shù)的解析式;

(2)若計(jì)劃在河流OC和觀光帶OABC之間新建一個(gè)如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQ,QP, PN構(gòu)成,其中點(diǎn)P在線段BC上.當(dāng)OM長為多少時(shí),綠化帶的總長度最長?

【答案】(1) .

(2)當(dāng)OM長為1千米時(shí),綠化帶的總長度最長.

【解析】試題分析:(1)曲線段過點(diǎn),且最高點(diǎn)為,可列出方程組,求解的值,可得當(dāng)上函數(shù)的解析式,后一部分為線段,,可得上的解析式;(2)求出綠化帶的總長度,可得二次函數(shù)即可得出結(jié)論.

試題解析:(1)因?yàn)榍段OAB過點(diǎn)O,且最高點(diǎn)為

,解得(也可以設(shè)成頂點(diǎn)式)

所以,當(dāng)時(shí),

因?yàn)楹笠徊糠譃榫段BC,當(dāng)時(shí),……6

綜上,

2)設(shè),則

, 得,

所以點(diǎn)

所以,綠化帶的總長度

……13

當(dāng)時(shí),

所以,當(dāng)OM長為1千米時(shí),綠化帶的總長度最長

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng),時(shí),求滿足的值;

(2)若函數(shù)是定義在上的奇函數(shù).

①存在,使得不等式有解,求實(shí)數(shù)的取值范圍;

②若函數(shù)滿足,若對(duì)任意,不等式恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組在暑期社會(huì)實(shí)踐活動(dòng)中,通過對(duì)某商店一種商品銷售情況的調(diào)查發(fā)現(xiàn):該商品在過去的一個(gè)月內(nèi)(以30天計(jì))的日銷售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系近似滿足為正常數(shù)).該商品的日銷售量(個(gè))與時(shí)間(天)部分?jǐn)?shù)據(jù)如下表所示:

(天)

10

20

25

30

(個(gè))

110

120

125

120

已知第10天該商品的日銷售收入為121.

I)求的值;

II)給出以下二種函數(shù)模型:

,②,

請(qǐng)你根據(jù)上表中的數(shù)據(jù),從中選擇你認(rèn)為最合適的一種函數(shù)來描述該商品的日銷售量與時(shí)間的關(guān)系,并求出該函數(shù)的解析式;

III)求該商品的日銷售收入(元)的最小值.

(函數(shù),在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.性質(zhì)直接應(yīng)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某神奇“黃金數(shù)學(xué)草”的生長圖.第1階段生長為豎直向上長為1米的枝干,第2階段在枝頭生長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,第3階段又在每個(gè)枝頭各長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,……,依次生長,直到永遠(yuǎn).

(1)求第3階段“黃金數(shù)學(xué)草”的高度;

(2)求第13階段“黃金數(shù)學(xué)草”的高度;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(0<φ<π)

(1)當(dāng)φ時(shí),在給定的坐標(biāo)系內(nèi),用“五點(diǎn)法”做出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象;

(2)若函數(shù)f(x)為偶函數(shù),求φ的值;

(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),對(duì)于任意的 ,都有, 當(dāng)時(shí),,且.

( I ) 求的值;

(II) 當(dāng)時(shí),求函數(shù)的最大值和最小值;

(III) 設(shè)函數(shù),判斷函數(shù)g(x)最多有幾個(gè)零點(diǎn),并求出此時(shí)實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)試作出的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;

(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司計(jì)劃投資,兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為.(注:利潤與投資金額單位:萬元)

(1)該公司已有100萬元資金,并全部投入兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把兩種產(chǎn)品利潤總和表示為的函數(shù),并寫出定義域;

(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

【答案】(1);(2)20,28.

【解析】

1)設(shè)投入產(chǎn)品萬元,則投入產(chǎn)品萬元,根據(jù)題目所給兩個(gè)產(chǎn)品利潤的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤總和的表達(dá)式.2)利用基本不等式求得利潤的最大值,并利用基本不等式等號(hào)成立的條件求得資金的分配方法.

(1)其中萬元資金投入產(chǎn)品,則剩余的(萬元)資金投入產(chǎn)品,

利潤總和為: ,

(2)因?yàn)?/span>

所以由基本不等式得:,

當(dāng)且僅當(dāng)時(shí),即:時(shí)獲得最大利潤28萬.

此時(shí)投入A產(chǎn)品20萬元,B產(chǎn)品80萬元.

【點(diǎn)睛】

本小題主要考查利用函數(shù)求解實(shí)際應(yīng)用問題,考查利用基本不等式求最大值,屬于中檔題.

型】解答
結(jié)束】
20

【題目】已知曲線.

(1)求曲線在處的切線方程;

(2)若曲線在點(diǎn)處的切線與曲線相切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足,且為偶函數(shù),若內(nèi)單調(diào)遞減,則下面結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案