14.已知正方形ABCD的邊長(zhǎng)為2,E是BC的中點(diǎn),以點(diǎn)C為圓心,CE長(zhǎng)為半徑作圓,點(diǎn)P是該圓上的任一點(diǎn),則$\overrightarrow{AP}•\overrightarrow{DE}$的取值范圍是(  )
A.$[0,2+\sqrt{6}]$B.$[2-\sqrt{6},2+\sqrt{6}]$C.$[0,2+\sqrt{5}]$D.$[2-\sqrt{5},2+\sqrt{5}]$

分析 由題意,建立平面直角坐標(biāo)系,設(shè)出各點(diǎn)坐標(biāo),利用數(shù)量積的坐標(biāo)運(yùn)算,得到P的關(guān)系式,結(jié)合點(diǎn)在圓上得到所求范圍.

解答 解:由題意,建立平面直角坐標(biāo)系,如圖則A(0,0),C(2,2),D(0,2),E(2,1),P(x,y),則(x-2)2+(y-2)2=1,
$\overrightarrow{AP}$=(x,y),$\overrightarrow{DE}$=(2,-1),
所以$\overrightarrow{AP}•\overrightarrow{DE}$=2x-y=z,則y=2x-z,當(dāng)此直線與圓相切時(shí)使得在y軸的截距取得最值,所以$\frac{|2-z|}{\sqrt{5}}=1$,解得z=2$±\sqrt{5}$,
所以$\overrightarrow{AP}•\overrightarrow{DE}$的取值范圍是[2-$\sqrt{5}$,2+$\sqrt{5}$];
故選D.

點(diǎn)評(píng) 本題考查了向量的坐標(biāo)運(yùn)算、點(diǎn)與圓的位置關(guān)系,考查了分類(lèi)討論思想方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某班A,B,C,D,E5個(gè)同學(xué)先坐好,然后玩坐座位的游戲,當(dāng)坐回自己原來(lái)的位置上稱(chēng)為“坐對(duì)”,否則稱(chēng)作“坐錯(cuò)“.
(1)求只有兩個(gè)人“坐對(duì)”的概率;
(2)若每“坐對(duì)”一個(gè)人得1分,“坐錯(cuò)“得-1分,設(shè)5人得分和的絕對(duì)值為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知R是實(shí)數(shù)集,集合 A={x|22x+1≥16},B={x|(x-1)(x-3)<0,則(∁RA)∩B=( 。
A.(1,2)B.[1,2]C.(1,3)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)的定義域?yàn)镽,當(dāng)x>0時(shí),f(x)<2,對(duì)任意的x,y∈R,f(x)+f(y)=f(x+y)+2成立,若數(shù)列{an}滿(mǎn)足a1=f(0),且f(an+1)=f($\frac{{a}_{n}}{{a}_{n}+3}$),n∈N*,則a2017的值為(  )
A.2B.$\frac{6}{2×{3}^{2016}-1}$C.$\frac{2}{2×{3}^{2016}-1}$D.$\frac{2}{2×{3}^{2015}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.一次數(shù)學(xué)考試后,某老師從自己所帶的兩個(gè)班級(jí)中各抽取6人,記錄他們的考試成績(jī),得到如圖所示的莖葉圖.已知甲班6名同學(xué)成績(jī)的平均數(shù)為82,乙班6名同學(xué)成績(jī)的中位數(shù)為77,則x-y=( 。
A.3B.-3C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)$f(x)=x-{e^{\frac{x}{a}}}$(a>0),且y=f(x)的圖象在x=0處的切線l與曲y=ex相切,符合情況的切線( 。
A.有0條B.有1條C.有2條D.有3條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=lnx-$\frac{1}{2}$x2+x
(1)設(shè)G(x)=f(x)+lnx,求G(x)的單調(diào)遞增區(qū)間;
(2)證明:k<1時(shí),存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)-$\frac{1}{2}$>k(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.電影院一排10個(gè)位置,甲、乙、丙三人去看電影,要求他們坐在同一排,那么他們每人左右兩邊都有空位且甲坐在中間的坐法有40種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合M={x|x>2},N={x|1<x<3},則N∩∁RM=( 。
A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案