8.方程($\frac{1}{3}$)x+x-2=0的解的個數(shù)是2.

分析 由題意可得,即求函數(shù)y=($\frac{1}{3}$)x的圖象和直線y=2-x的交點的個數(shù),數(shù)形結合可得結論.

解答 解:方程($\frac{1}{3}$)x+x-2=0的解的個數(shù),即函數(shù)y=($\frac{1}{3}$)x 的圖象和直線y=2-x的交點的個數(shù),
如圖所示:
可得函數(shù)y=($\frac{1}{3}$)x的圖象和直線y=2-x的交點的個數(shù)為2,
故答案為:2.

點評 本題主要考查方程根的存在性以及個數(shù)判斷,函數(shù)的圖象和性質(zhì)的應用,體現(xiàn)了數(shù)形結合與轉化的數(shù)學思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知集合A={x|-9<x<6},集合B={x|x2-3ax+2a2=0,x∈R},且B⊆A,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$bx2+x,連續(xù)拋擲兩顆骰子得到的點數(shù)分別是a,b,則函數(shù)f′(x)在x=1處取得最值的概率是( 。
A.$\frac{1}{36}$B.$\frac{1}{18}$C.$\frac{1}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)對于任意實數(shù)a(a≠0)和b,求$\frac{|a+b|+|a-2b|}{|a|}$的最小值;
(2)在(1)的條件下,不等式|a+b|+|a-2b|≥|a|(|x-1|+|x-2|)恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=|x+2|+|x+m|(m<2),若f(x)的最小值為1.
(1)試求實數(shù)m的值;
(2)求證:log2(2a+2b)-m≥$\frac{a+b}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在直角坐標系xOy中,直線?的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(以t為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2θ=cosθ.
(Ⅰ)把C的極坐標方程化為普通方程;
(Ⅱ)求?與C交點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.為了調(diào)查某地區(qū)成年人血液的一項指標,現(xiàn)隨機抽取了成年男性、女性各10人組成的一個樣本,對他們的這項血液指標進行了檢測,得到了如下莖葉圖.根據(jù)醫(yī)學知識,我們認為此項指標大于40為偏高,反之即為正常.
(Ⅰ)依據(jù)上述樣本數(shù)據(jù)研究此項血液指標與性別的關系,完成下列2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.10的前提下認為此項血液指標與性別有關系?
正常偏高合計
男性
女性
合計
(Ⅱ)現(xiàn)從該樣本中此項血液指標偏高的人中隨機抽取2人去做其它檢測,求恰好有一名男性和一名女性被抽到的概率.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知△ABC的三個內(nèi)角A、B、C成等差數(shù)列,面積為10$\sqrt{3}$cm2,周長為20cm,求△ABC的三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.求解關于x的不等式:3x2-ax-a>0.

查看答案和解析>>

同步練習冊答案