【題目】如圖,在四棱錐中,底面是直角梯形,,是正三角形,的中點.

(1)證明:;

(2)求直線與平面所成角的正弦值.

【答案】(1)見證明;(2)

【解析】

(1)設(shè)的中點,連接,先證明是平行四邊形,再證明平面,即

2)以為坐標(biāo)原點,的方向為軸的正方向,建空間直角坐標(biāo)系,分別計算各個點坐標(biāo),計算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.

(1)證明:設(shè)的中點,連接,

的中點,,

,,

是平行四邊形,

,,

,

由余弦定理得

,

,平面,

(2)由(1)得平面,平面平面,

過點,垂足為,平面,以為坐標(biāo)原點,的方向為軸的正方向,建立如圖的空間直角坐標(biāo)系,

,,

設(shè)是平面的一個法向量,則,

,則,,

,

直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

當(dāng)時,求曲線處的切線方程;

(Ⅱ)求函數(shù)上的最小值;

(Ⅲ)若函數(shù),當(dāng)時, 的最大值為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項均為正數(shù)的數(shù)列的前項和為,滿足,恰為等比數(shù)列的前3.

1)求數(shù)列的通項公式;

2)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】齊王有上等,中等,下等馬各一匹;田忌也有上等,中等,下等馬各一匹.田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)從雙方的馬匹中隨機(jī)各選一匹進(jìn)行一場比賽,若有優(yōu)勢的馬一定獲勝,則齊王的馬獲勝的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出:堅決打贏脫貧攻堅戰(zhàn),做到精準(zhǔn)扶貧,某幫扶單位為幫助定點扶貧村真正脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植臍橙,并利用互聯(lián)網(wǎng)電商進(jìn)行銷售,為了提高銷量,現(xiàn)從該村的臍橙樹上隨機(jī)摘下100個臍橙進(jìn)行測重,其質(zhì)量(單位克)分布在區(qū)間[200500內(nèi),由統(tǒng)計的質(zhì)量數(shù)據(jù)作出頻率分布直方圖如圖所示.

1)按分層抽樣的方法從質(zhì)量在,的臍橙中隨機(jī)抽取5個,再從這5個臍橙中隨機(jī)抽取2個,求這2個臍橙質(zhì)量至少有一個不小于400克的概率;

2)以各組數(shù)據(jù)的中間數(shù)值代替這組數(shù)據(jù)的平均值,以頻率代替概率,已知該村的臍橙種植地上大約還有100000個臍橙待出售,某電商提出兩種收購方案:

A.所有臍橙均以7/千克收購;

B.低于350克的臍橙以2/個收購,其余的以3/個收購.

請你通過計算為該村選擇收益較好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)證明:,都有;

2)若函數(shù)有且只有一個零點,求的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是函數(shù)的一個極值點,試討論的單調(diào)性;

2)若R上有且僅有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校組織由5名學(xué)生參加的演講比賽,采用抽簽法決定演講順序,在“學(xué)生都不是第一個出場,不是最后一個出場”的前提下,學(xué)生第一個出場的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王參加一次比賽,比賽共設(shè)三關(guān),第一、二關(guān)各有兩個必答題,如果每關(guān)兩個問題都答對,可進(jìn)入下一關(guān),第三關(guān)有三個問題,只要答對其中兩個問題,則闖關(guān)成功,每過一關(guān)可一次性獲得價值分別為1000元,3000元,6000元的獎品(不重復(fù)得獎),小王對三關(guān)中每個問題回答正確的概率依次為,,且每個問題回答正確與否相互獨立.

1)求小王過第一關(guān)但未過第二關(guān)的概率;

2)用表示小王所獲得獲品的價值,寫出的概率分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案