分析 (1)依題意,利用正弦定理和兩角和的正弦公式,可知sin(B+C)=sinA=sin2A,易求sinA=1,從而可得答案,
(2)先表示出h=csinB,繼而得到$\frac{a}{h}$+tanB=2tanB+$\frac{1}{tanB}$,利用基本不等式即可求出答案
解答 解:△ABC中,∵bcosC+ccosB=asinA,
∴由正弦定理得:sinBcosC+sinCcosB=sin2A,
即sin(B+C)=sin(π-A)=sinA=sin2A,又sinA>0,
∴sinA=1,A∈(0,π),
∴A=$\frac{π}{2}$.
(2)∵在Rt△CAB中,邊BC上的高為h
∴h=csinB,
∴$\frac{a}{h}$+tanB=$\frac{a}{csinB}$+$\frac{sinB}{cosB}$=$\frac{sinA}{sinCsinB}$+tanB,
=$\frac{1}{cosBsinB}$+tanB,
=$\frac{si{n}^{2}B+co{s}^{2}B}{cosBsinB}$+tanB,
=2tanB+$\frac{1}{tanB}$,
≥2$\sqrt{2tanB•\frac{1}{tanB}}$=2$\sqrt{2}$,當(dāng)且僅當(dāng)tanB=$\frac{\sqrt{2}}{2}$時取等號,
∴$\frac{a}{h}$+tanB的最小值為2$\sqrt{2}$
點評 本題主要考查了正弦定理的應(yīng)用以及基本不等式的應(yīng)用.掌握三角函數(shù)的恒等變換是關(guān)鍵,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,4) | B. | (1,3) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24+8$\sqrt{2}$+8$\sqrt{5}$ | B. | 20+8$\sqrt{2}$+4$\sqrt{5}$ | C. | 20+8$\sqrt{5}$+4$\sqrt{2}$ | D. | 20+4$\sqrt{2}$+4$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4立方丈 | B. | 5立方丈 | C. | 6立方丈 | D. | 8立方丈 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com