17.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈.問積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,無寬,高1丈.現(xiàn)給出該楔體的三視圖,其中網(wǎng)格紙上小正方形的邊長為1丈,則該楔體的體積為( 。
A.4立方丈B.5立方丈C.6立方丈D.8立方丈

分析 作出幾何體的直觀圖,將幾何體分解成兩個四棱錐和一個三棱柱計算體積.

解答 解:作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個四棱錐和1個直三棱柱,
則三棱柱的體積V1=$\frac{1}{2}×3×1×2$=3,四棱錐的體積V2=$\frac{1}{3}×1×3×1$=1,
由三視圖可知兩個四棱錐大小相等,
∴V=V1+2V2=5.
故選:B.

點評 本題考查了常見幾何體及其組合體的三視圖,幾何體的體積計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C的對邊分別為a,b,c,已知bcosC+ccosB=asinA,邊BC上的高為h.
(1)求角A的大;
(2)求$\frac{a}{h}$+tanB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點,D1E⊥CD,AB=2BC=2.
(1)求證:BC⊥D1E;
(2)若平面BCC1B1與平面BED1所成的銳二面角的大小為$\frac{π}{3}$,求線段D1E的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{1}{2}+\frac{π}{2}$B.$1+\frac{π}{2}$C.1+πD.2+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c.
(1)若c=$\sqrt{6},A={45°}$,a=2,求C,b;
(2)若a=btanA,且B為鈍角,證明:B-A=$\frac{π}{2}$,并求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)$f(x)=lg(tanx-1)+\sqrt{9-{x^2}}$,則f(x)的定義域是(-$\frac{3π}{4}$,-$\frac{π}{2}$)∪($\frac{π}{4}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.二面角α-l-β為60°,異面直線a、b分別垂直于α、β,則a與b所成角的大小是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),離心率e=$\frac{\sqrt{3}}{3}$,點P($\frac{\sqrt{6}}{2}$,1)在橢圓C上.
(1)求橢圓C的方程;
(2)過C的右焦點F作兩條弦AB,CD,滿足$\overrightarrow{AB}$?$\overrightarrow{CD}$=0,且$\overrightarrow{AB}$=2$\overrightarrow{AM}$,$\overrightarrow{CD}$=2$\overrightarrow{CN}$,求證:直線MN過定點,并求出此定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知以點$C(t,\frac{2}{t})(t∈R且t≠0)$為圓心的圓經(jīng)過原點O,且與x軸交于點A,與y軸交于點B.
(1)求證:△AOB的面積為定值.
(2)設(shè)直線2x+y-4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.
(3)當(dāng)t>0時,在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案