【題目】如圖, 為半圓 的直徑,點 是半圓弧上的兩點, , .曲線 經(jīng)過點 ,且曲線 上任意點 滿足: 為定值.
(Ⅰ)求曲線 的方程;
(Ⅱ)設(shè)過點 的直線 與曲線 交于不同的兩點 ,求 面積最大時的直線 的方程.
【答案】解:(Ⅰ)根據(jù)橢圓的定義,曲線 是以 為焦點的橢圓,其中 , .
,
, ,曲線 的方程為 ;
(Ⅱ)設(shè)過點 的直線 的斜率為 ,則 .
由 得 ,
,
,
又 點 到直線 的距離 , 的面積 .
令 ,則 .
當(dāng)且僅當(dāng) ,即 時, 面積取最大值 .
此時直線 的方程為 或 .
【解析】(1)由條件先求出c,再由定義求出a,從而 求出橢圓的方程;
(2)設(shè)出過點D的直線的方程,代入到橢圓方程中,消去y,得關(guān)于x的一元二次方程,結(jié)合韋達(dá)定理和弦長公式將三角形的面積表示為關(guān)于k的函數(shù)式,由均值不等式求最值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)的定義在(0,3)上的函數(shù),f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是( )
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R).
(1)若函數(shù)f(x)的圖象過點(-2,1),且方程f(x)=0有且只有一個根,求f(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-1,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有下面四個命題
p1:若復(fù)數(shù)z滿足 ∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1 , z2滿足z1z2∈R,則z1= ;
p4:若復(fù)數(shù)z∈R,則 ∈R.
其中的真命題為( 。
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個內(nèi)角A,B,C的對邊分別a,b,c,已知 , ,且 ∥
(1)證明sinBsinC=sinA;
(2)若a2+c2﹣b2= ac,求tanC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=2x2-ln x在其定義域內(nèi)的一個子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實數(shù)k的取值范圍是( )
A.[1,+∞)
B.[1,2)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aln x-bx2 , a,b∈R.
(1)若f(x)在x=1處與直線y=- 相切,求a,b的值;
(2)在(1)的條件下,求f(x)在 上的最大值;
(3)若不等式f(x)≥x對所有的b∈(-∞,0],x∈(e,e2]都成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐 中,底面 為正方形, 平面 ,且 ,點 在線段 上,且 .
(Ⅰ)證明:平面 平面 ;
(Ⅱ)求二面角 的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com