【題目】已知f(x)的定義在(0,3)上的函數(shù),f(x)的圖象如圖所示,那么不等式f(x)cosx<0的解集是( )
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)
【答案】C
【解析】解:由函數(shù)圖象可知:當(dāng)f(x)<0時(shí),0<x<1;當(dāng)f(x)>0時(shí),1<x<3;
而cosx中的x∈(0,3),當(dāng)cosx>0時(shí),x∈(0, );當(dāng)cosx<0時(shí),x∈( ,3),
則f(x)cosx<0,可化為: 或 即 或 ,
解得: <x<3或0<x<1,
所以所求不等式的解集為:(0,1)∪( ,3),
故選C.
【考點(diǎn)精析】本題主要考查了函數(shù)的圖象和余弦函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值;余弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x0∈R,m +2≤0,q:x∈R,x2-2mx+1>0,若p∨q為假命題,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《孫子算經(jīng)》中有如下問題:“今有三女,長(zhǎng)女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會(huì)?” 意思是:“一家出嫁的三個(gè)女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個(gè)女兒從娘家同一天走后,至少再隔多少天三人再次相會(huì)?”假如回娘家當(dāng)天均回夫家,若當(dāng)?shù)仫L(fēng)俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ln(x2﹣2x﹣8)的單調(diào)遞增區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)F作直線l與拋物線分別交于兩點(diǎn)A,B,若點(diǎn)M滿足 = ( + ),過M作y軸的垂線與拋物線交于點(diǎn)P,若|PF|=2,則M點(diǎn)的橫坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x<1},B={x|3x<1},則( 。
A.A∩B={x|x<0}
B.A∪B=R
C.A∪B={x|x>1}
D.A∩B=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系 中,圓 的參數(shù)方程為 ( 為參數(shù), 是大于0的常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓 的極坐標(biāo)方程為 .
(1)求圓 的極坐標(biāo)方程和圓 的直角坐標(biāo)方程;
(2)分別記直線 : , 與圓 、圓 的異于原點(diǎn)的焦點(diǎn)為 , ,若圓 與圓 外切,試求實(shí)數(shù) 的值及線段 的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為半圓 的直徑,點(diǎn) 是半圓弧上的兩點(diǎn), , .曲線 經(jīng)過點(diǎn) ,且曲線 上任意點(diǎn) 滿足: 為定值.
(Ⅰ)求曲線 的方程;
(Ⅱ)設(shè)過點(diǎn) 的直線 與曲線 交于不同的兩點(diǎn) ,求 面積最大時(shí)的直線 的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com