12.已知不等式x2+ax+b<0的解集是{x|-1<x<2},則a+b等于( 。
A.-3B.1C.-1D.3

分析 根據(jù)一元二次不等式與對應(yīng)方程的關(guān)系,利用根與系數(shù)的關(guān)系求出a、b的值,再求a+b的值.

解答 解:不等式x2+ax+b<0的解集是{x|-1<x<2},
∴方程x2+ax+b=0的實(shí)數(shù)根是-1和2,
由根與系數(shù)的關(guān)系知,
a=-(-1+2)=-1,
b=-1×2=-2;
∴a+b=-1-2=-3.
故選:A.

點(diǎn)評 本題考查了一元二次不等式與對應(yīng)方程的關(guān)系以及根與系數(shù)的關(guān)系問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個(gè)涉及幾何體體積的問題,意思是兩個(gè)同高的幾何體,如在等高處的截面面積恒相等,則體積相等.設(shè)A,B為兩個(gè)同高的幾何體,p:A,B的體積相等,q:A,B在等高處的截面面積恒相等,根據(jù)祖暅原理可知,p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.a(chǎn),b∈R,求證:a6+b6≥a4b2+a2b4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某幾何體的三視圖如圖,其俯視圖與左視圖均為半徑是$\frac{1}{2}$的圓,則該幾何體的表面積是( 。
A.16πB.C.πD.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知g(x)=mx,G(x)=lnx.
(Ⅰ)若G(x)+x+2≤g(x)恒成立,求m的取值范圍;
(Ⅱ)令b=G(a)+a+2,求證:b-2a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為1,前n項(xiàng)和為Sn,且a1,a2,a4成等比數(shù)列,則$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{15}}}}$=$\frac{15}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,若$2{a_{n+1}}-{a_n}=\frac{n-2}{{n({n+1})({n+2})}}$,${b_n}={a_n}-\frac{1}{{n({n+1})}}$,
(1)求證:{bn}為等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)若Cn=nbn,且其前n項(xiàng)和為Tn,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在菱形ABCD中,A=60°,AB=2$\sqrt{3}$,將△ABD沿BD折起到△PBD的位置,若二面角P-BD-C的大小為120°,三棱錐P-BCD的外接球球心為O,BD的中點(diǎn)為E,則OE=( 。
A.1B.2C.$\sqrt{7}$D.2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在正方體ABCD-A1B1C1D1中,已知$\overrightarrow{{A}_{1}A}$=$\overrightarrow{a}$,$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow$,$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{c}$,O為底面ABCD中心,G為△D1C1O重心,則$\overrightarrow{AG}$=( 。ㄓ$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示)
A.$\frac{5}{6}\overrightarrow c-\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow a$B.$\frac{5}{6}\overrightarrow c+\frac{1}{2}\overrightarrow b+\frac{2}{3}\overrightarrow a$C.$\frac{5}{6}\overrightarrow c+\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow a$D.$\frac{5}{6}\overrightarrow c-\frac{1}{2}\overrightarrow b+\frac{2}{3}\overrightarrow a$

查看答案和解析>>

同步練習(xí)冊答案