3.已知函數(shù) $f(x)={2^x}-\sqrt{x}-14$,若在區(qū)間(0,16)內(nèi)隨機(jī)取一個(gè)數(shù)x0,則f(x0)>0的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 由題意可得總的區(qū)間長度,解不等式可得滿足條件的區(qū)間長度,由幾何概型的概率公式可得.

解答 解:令f(x)=0,解得:x=4,
故在區(qū)間(0,16)內(nèi)隨機(jī)取一個(gè)數(shù)x0,則f(x0)>0的概率
p=$\frac{16-4}{16}$=$\frac{3}{4}$,
故選:D.

點(diǎn)評(píng) 本題考查幾何概型,涉及不等式的解法,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$右焦點(diǎn)到漸近線的距離為( 。
A.3B.4C.5D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知冪函數(shù)f(x)=(m-1)2x${\;}^{{m}^{2}-3m+2}$在(0,+∞)上單調(diào)遞增,函數(shù)g(x)=2x+k,當(dāng)x∈(1,2]時(shí),記f(x)和g(x)的值域分別為A和B,若B⊆A∩B,則實(shí)數(shù)k的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.定義在R上的函數(shù)f(x),其周期為4,且當(dāng)x∈[-1,3]時(shí),f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}}&{x∈[-1,1]}\\{1-|x-2|}&{x∈(1,3]}\end{array}\right.$,
(1)畫出函數(shù)在x∈[-1,3]的簡圖
(2)若函數(shù)g(x)=f(x)-kx-k恰有4個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合 A={-2,-1,0,2,3},B={y|y=|x|,x∈A},則A∩B=( 。
A.{0,1,2,3}B.{2,3}C.{0,1,2}D.{0,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c.已知a=2acosAcosB-2bsin2A.
(1)求C;
(2)若△ABC的面積為$\frac{{15\sqrt{3}}}{4}$,周長為 15,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知三棱錐的三視圖如圖所示,其中俯視圖為直角三角形,俯視圖為等腰直角三角形,則此三棱錐的體積等于( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知{an}是公差不為0的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求證:數(shù)列{bn}的前n項(xiàng)和Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d≠0,且S1+S3=18,a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè){$\frac{{a}_{n}}{_{n}}$}是首項(xiàng)為1,公比為$\frac{1}{3}$的等比數(shù)列,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案