4.已知函數(shù)f(x)=ax2+bx-2的兩個零點分別是1和-2.
(1)求f(x)的解析式;
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值.

分析 (1)根據(jù)函數(shù)f(x)的零點,得到關(guān)于a,b的方程組,解出即可;(2)求出函數(shù)f(x)的對稱軸,得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可.

解答 解:(1)函數(shù)f(x)=ax2+bx-2的兩個零點分別是1和-2,
∴f(1)=a+b-2=0,f(-2)=4a-2b-2=0,
解得:a=1,b=1,
故f(x)=x2+x-2;
(2)f(x)=x2+x-2,對稱軸是x=-$\frac{1}{2}$,
故f(x)在[-1,-$\frac{1}{2}$)遞減,在(-$\frac{1}{2}$,1]遞增,
故f(x)min=f(-$\frac{1}{2}$)=-$\frac{9}{4}$,f(x)max=f(1)=0.

點評 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若滿足∠A=30°,BC=10的△ABC恰好有不同的兩個,則邊AB長的取值范圍為( 。
A.(5,10)B.(10,20)C.[20,+∞)D.(5,10)∪[20,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知θ是第四象限角,且$sinθ+cosθ=\frac{1}{5}$,求值:
(1)sinθ-cosθ;
(2)tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.2015年10月,中國共產(chǎn)黨第十八屆中央委員會第五次全體會議公報指出:堅持計劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實施一對夫婦可生育兩個孩子政策,積極開展應(yīng)對人口老齡化行動.為響應(yīng)黨中央號召,江南某化工廠以x千克/小時的速度勻速生產(chǎn)某種化纖產(chǎn)品,以提供生產(chǎn)嬰兒的尿不濕原材料,生產(chǎn)條件要求1≤x≤10,已知該化工廠每小時可獲得利潤是$100({5x+1-\frac{3}{x}})$元.
(1)要使生產(chǎn)該化纖產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該化纖產(chǎn)品獲得的利潤最大,問:該化工廠應(yīng)該選取何種生產(chǎn)速度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=1+log2x在x∈[4,+∞)上的值域是(  )
A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{2{x}^{-1},x>1}\end{array}\right.$,則f(f(3))的值是( 。
A.$\frac{1}{5}$B.3C.$\frac{2}{3}$D.$\frac{13}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)對任意x,y∈R有f(x)+f(y)=2+f(x+y),且當(dāng)x>0時,f(x)>2.
(1)判斷函數(shù)f(x)的單調(diào)性,并給與證明;
(2)若f(3)=5,解不等式f(a2-2a-2)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=lg(x2-2ax+a)的定義域為R,則實數(shù)a的取值范圍是(0,1)(用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.圓C經(jīng)過點(1,0),且與直線x=-1,y=4都相切,則點C的坐標(biāo)為(1,2)或(9,-6).

查看答案和解析>>

同步練習(xí)冊答案