A. | 12 | B. | 23 | C. | √32 | D. | √22 |
分析 設|F1B|=k(k>0),則|AF1|=3k,|AB|=4k,由cos∠AF2B=35,利用余弦定理,可得a=3k,從而△AF1F2是等腰直角三角形,即可求橢圓E的離心率.
解答 解:設|F1B|=k(k>0),則|AF1|=3k,|AB|=4k,
∴|AF2|=2a-3k,|BF2|=2a-k
∵cos∠AF2B=35,
在△ABF2中,由余弦定理得,|AB|2=|AF2|2+|BF2|2-2|AF2|•|BF2|cos∠AF2B,
∴(4k)2=(2a-3k)2+(2a-k)2-65(2a-3k)(2a-k),
化簡可得(a+k)(a-3k)=0,而a+k>0,故a=3k,
∴|AF2|=|AF1|=3k,|BF2|=5k,
∴|BF2|2=|AF2|2+|AB|2,
∴AF1⊥AF2,
∴△AF1F2是等腰直角三角形,
∴c=√22a,
∴橢圓的離心率e=ca=√22,
故選:D.
點評 本題考查了橢圓的定義標準方程及其性質、勾股定理的逆定理、余弦定理,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2} | B. | {-1,0,1,2} | C. | {-3,-2,-1,0} | D. | {2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0} | B. | {-3,-4} | C. | {-1,-2} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2) | B. | (1,3√24] | C. | (1,+∞) | D. | (3√24,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [3π8+2kπ,7π8+2kπ](k∈Z) | B. | [−π8+2kπ,3π8+2kπ](k∈Z) | ||
C. | [3π8+kπ,7π8+kπ](k∈Z) | D. | [−π8+kπ,3π8+kπ](k∈Z) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com