分析 求出||AB|=xA+$\frac{1}{2}$,|CD|=xD+$\frac{1}{2}$,當(dāng)l⊥x軸時(shí),則xD=xA=1,9|AB|+4|CD|=$\frac{39}{2}$.當(dāng)l:y=k(x-1)時(shí),代入拋物線方程,得:k2x2-(2k2+4)x+k2=0,9|AB|+4|CD|=$\frac{13}{2}+9{x}_{A}+4{x}_{D}$$≥\frac{13}{2}+2\sqrt{4×9{x}_{A}{x}_{D}}=\frac{37}{2}$.
解答 解:∵y2=4x,焦點(diǎn)F(1,0),準(zhǔn)線 l0:x=-1
由定義得:|AF|=xA+1,
又∵|AF|=|AB|+$\frac{1}{2}$,∴|AB|=xA+$\frac{1}{2}$
同理:|CD|=xD+$\frac{1}{2}$,
當(dāng)l⊥x軸時(shí),則xD=xA=1,∴9|AB|+4|CD|=$\frac{39}{2}$.
當(dāng)l:y=k(x-1)時(shí),代入拋物線方程,得:k2x2-(2k2+4)x+k2=0,
∴xAxD=1,xA+xD=1,
∴9|AB|+4|CD|=$\frac{13}{2}+9{x}_{A}+4{x}_{D}$$≥\frac{13}{2}+2\sqrt{4×9{x}_{A}{x}_{D}}=\frac{37}{2}$.
綜上所述4|AB|+9|CD|的最小值為$\frac{37}{2}$.
故答案為:$\frac{37}{2}$.
點(diǎn)評 本題考查圓與拋物線的綜合,考查基本不等式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{8}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -6 | C. | $-\frac{14}{3}$ | D. | ±6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m=-1或3 | B. | m=-1 | C. | m=-3 | D. | m=1或m=-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 135 | B. | 105 | C. | 30 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 35 | B. | $\frac{5}{2}$ | C. | 20 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com