【題目】當(dāng)時(shí),若函數(shù)的圖象與的圖象有且只有一個(gè)交點(diǎn),則正實(shí)數(shù)的取值范圍是(

A.B.C.D.

【答案】B

【解析】

根據(jù)題意,由二次函數(shù)的性質(zhì)分析可得為二次函數(shù),在區(qū)間 為減函數(shù),在區(qū)間為增函數(shù),兩種情況,結(jié)合圖象分析兩個(gè)函數(shù)的單調(diào)性與值域,即可得出正實(shí)數(shù)的取值范圍.

解:當(dāng)時(shí),又因?yàn)?/span>為正實(shí)數(shù),

函數(shù)的圖象二次函數(shù),

在區(qū)間 為減函數(shù),在區(qū)間為增函數(shù);

函數(shù),是斜率為的一次函數(shù).

最小值為,最大值為;

①當(dāng)時(shí),時(shí),

函數(shù)在區(qū)間 為減函數(shù),

在區(qū)間 為增函數(shù),

的圖象與的圖象有且只有一個(gè)交點(diǎn),

,

,解得,

所以

②當(dāng)時(shí),時(shí),

函數(shù)在區(qū)間 為減函數(shù),在區(qū)間為增函數(shù),

在區(qū)間 為增函數(shù),

的圖象與的圖象有且只有一個(gè)交點(diǎn),

,

的圖象與的圖象有且只有一個(gè)交點(diǎn)

,

解得

綜上所述:正實(shí)數(shù)的取值范圍為.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市實(shí)施了機(jī)動(dòng)車(chē)尾號(hào)限行,該市報(bào)社調(diào)查組為了解市區(qū)公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

年齡(歲)

[1525)

[25,35)

[3545)

[45,55)

[55,65)

[6575]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

9

6

3

4

(Ⅰ)請(qǐng)估計(jì)該市公眾對(duì)“車(chē)輛限行”的贊成率和被調(diào)查者的年齡平均值;

)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記被選4人中不贊成“車(chē)輛限行”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

若在這50名被調(diào)查者中隨機(jī)發(fā)出20份的調(diào)查問(wèn)卷,記為所發(fā)到的20人中贊成“車(chē)輛限行”的人數(shù),求使概率取得最大值的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司準(zhǔn)備上市一款新型轎車(chē)零配件,上市之前擬在其一個(gè)下屬4S店進(jìn)行連續(xù)30天的試銷(xiāo).定價(jià)為1000/.試銷(xiāo)結(jié)束后統(tǒng)計(jì)得到該4S店這30天內(nèi)的日銷(xiāo)售量(單位:件)的數(shù)據(jù)如下表:

日銷(xiāo)售量

40

60

80

100

頻數(shù)

9

12

6

3

1)若該4S店試銷(xiāo)期間每個(gè)零件的進(jìn)價(jià)為650/件,求試銷(xiāo)連續(xù)30天中該零件日銷(xiāo)售總利潤(rùn)不低于24500元的頻率;

2)試銷(xiāo)結(jié)束后,這款零件正式上市,每個(gè)定價(jià)仍為1000元,但生產(chǎn)公司對(duì)該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價(jià)為550/件;小箱每箱有45件,批發(fā)價(jià)為600/.4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒(méi)銷(xiāo)售出的零件按批發(fā)價(jià)的9折轉(zhuǎn)給該公司的另一下屬4S.假設(shè)該4店試銷(xiāo)后的連續(xù)30天的日銷(xiāo)售量(單位:件)的數(shù)據(jù)如下表:

日銷(xiāo)售量

50

70

90

110

頻數(shù)

5

15

8

2

(。┰O(shè)該4S店試銷(xiāo)結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤(rùn);

(ⅱ)以總利潤(rùn)作為決策依據(jù),該4S店試銷(xiāo)結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)為3的線段的兩端點(diǎn)分別在軸和軸上移動(dòng),.

1)求點(diǎn)的軌跡的方程.

2)過(guò)作互相垂直的兩條直線分別與軌跡交于,,,設(shè)中點(diǎn)為,中點(diǎn)為,試探究直線是否過(guò)定點(diǎn)?若是,求出該定點(diǎn);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=2cosxsinx+2φ)為偶函數(shù),其中φ∈(0,),則下列關(guān)于函數(shù)gx)=sin2x+φ)的描述正確的是(

A.gx)在區(qū)間[]上的最小值為﹣1

B.gx)的圖象可由函數(shù)fx)的圖象向上平移一個(gè)單位,再向右平移個(gè)單位長(zhǎng)度得到

C.gx)的圖象的一個(gè)對(duì)稱中心為(0

D.gx)的一個(gè)單調(diào)遞增區(qū)間為[0,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)若函數(shù)存在最小值,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是正方形,底面,,、、分別是棱、的中點(diǎn),對(duì)于平面截四棱錐所得的截面多邊形,有以下三個(gè)結(jié)論:

①截面的面積等于

②截面是一個(gè)五邊形;

③截面只與四棱錐四條側(cè)棱中的三條相交.

其中,所有正確結(jié)論的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,過(guò)點(diǎn)且不過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),直線與直線交于點(diǎn)

(Ⅰ)若垂直于軸,求直線的斜率;

(Ⅱ)試判斷直線與直線的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新冠病毒是一種通過(guò)飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗(yàn)方式是檢驗(yàn)血液樣本相關(guān)指標(biāo)是否為陽(yáng)性,對(duì)于份血液樣本,有以下兩種檢驗(yàn)方式:一是逐份檢驗(yàn),則需檢驗(yàn)次.二是混合檢驗(yàn),將其中份血液樣本分別取樣混合在一起,若檢驗(yàn)結(jié)果為陰性,那么這份血液全為陰性,因而檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪些為陽(yáng)性,就需要對(duì)它們?cè)僦鸱輽z驗(yàn),此時(shí)份血液檢驗(yàn)的次數(shù)總共為次.某定點(diǎn)醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗(yàn)方案:方案一,逐個(gè)檢驗(yàn);方案二,平均分成兩組檢驗(yàn);方案三,四個(gè)樣本混在一起檢驗(yàn).假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是相互獨(dú)立的,且每份樣本是陰性的概率為

(Ⅰ)求把2份血液樣本混合檢驗(yàn)結(jié)果為陽(yáng)性的概率;

(Ⅱ)若檢驗(yàn)次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個(gè)最“優(yōu)”?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案