若點P(x,y)在橢圓
x2
4
+
y2
3
=1上,則x的范圍是(  )
A、[-4,4]
B、[-2,2]
C、[-3,3]
D、[-
3
3
]
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由橢圓
x2
4
+
y2
3
=1可得
y2
3
=1-
x2
4
≥0,即可求出x的范圍.
解答: 解:由橢圓
x2
4
+
y2
3
=1可得
y2
3
=1-
x2
4
≥0,
∴-2≤x≤2.
故選:B.
點評:本題考查橢圓的簡單性質(zhì),考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于f(x)=3sin(2x+
π
4
)有以下命題,其中正確命題的個數(shù)(  )
①若f(x1)=f(x2)=0,則x1-x2=kπ(k∈Z);
②f(x)圖象與g(x)=3cos(2x-
π
4
)圖象相同;
③f(x)在區(qū)間[-
8
,-
8
]上是減函數(shù);
④f(x)圖象關(guān)于點(-
π
8
,0)對稱.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,二面角A-BD1-B1的大小為( 。
A、90°B、60°
C、120°D、45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果25,x,y,z,1成等比數(shù)列,那么( 。
A、y=5,xz=25
B、y=-5,xz=25
C、y=5,xz=-25
D、y=-5,xz=-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a≤8”是“關(guān)于實數(shù)x的不等式|x-5|+|x+3|>a對任意x∈R恒成立”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項a1=1,a2=p-1(p為常數(shù),|p|<1,p≠0),當(dāng)n≥2時,{an}是以p為公比的等比數(shù)列,{an}的前n項和Sn=a1+a2+…+an(n≥1)
(1)試問S1,S2,…,Sn能否構(gòu)成等差數(shù)列或等比數(shù)列?
(2)設(shè)Wn=a1S1+a2S2+…+anSn,證明
lim
n→∞
Wn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

企業(yè)管理者通過對某電子產(chǎn)品制造廠做上午班工人工作效率的研究表明,一個中等技術(shù)水平的工人,從8:00開始工作,t小時后可裝配某電子產(chǎn)品的個數(shù)為Q(t)=-t3+3t2+9t,則這個工人從8:00到12:00何時的工作效率最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,且∠DAB=60°.側(cè)面PAD為正三角形,其所在的平面垂直于底面ABCD,G為AD邊的中點.
(1)求證:BG⊥平面PAD;
(2)求平面PBG與平面PCD所成二面角的平面角的余弦值;
(3)若E為BC邊的中點,能否在棱PC上找到一點F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=
1
(3n-2)•3n
,求an

查看答案和解析>>

同步練習(xí)冊答案