15.某大學舞蹈社團為了解新生對街舞的喜歡是否與性別有關(guān),在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如表所示:
喜歡街舞不喜歡街舞合計
男生18426210
女生20050250
合計38476460
根據(jù)表中數(shù)據(jù),求得K2的觀測值k0=$\frac{460×(26×200-184×50)^{2}}{210×250×76×384}$,則至少有( 。%的把握認為對街舞的喜歡與性別有關(guān).
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
A.90B.95C.97.5D.99

分析 根據(jù)表中數(shù)據(jù),計算K2的觀測值,對照臨界值表得出結(jié)論.

解答 解:根據(jù)表中數(shù)據(jù),計算K2的觀測值
k0=$\frac{460×(26×200-184×50)^{2}}{210×250×76×384}$≈4.804>3.841,
對照臨界值表知,至少有95%的把握認為對街舞的喜歡與性別有關(guān).
故選:B.

點評 本題考查了獨立性檢驗的應(yīng)用問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知$f(x)=(\sqrt{3}sinωx+cosωx)cosωx-\frac{1}{2}$,其中ω>0,若f(x)的最小正周期為4π.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)圖象上各點向左平移$\frac{π}{3}$個單位長度,得到函數(shù)y=g(x)的圖象,當x∈(-π,π)時,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.命題?x∈R,tanx≠1,的否定是( 。
A.?x∉R,tanx≠1B.?x∈R,tanx=1C.?x0∉Rtanx0=1D.?x0∈R,tanx0=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)m,n,l為空間不重合的直線,α,β,γ是空間不重合的平面,則下列說法正確的是( 。
A.若m⊥l,n⊥l,則m∥nB.若l∥m,l?α,則α∥β
C.若m∥l,m∥α,則l∥αD.若α⊥γ,β⊥γ,α∩β=l,則l⊥γ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列四個函數(shù)中,以π為最小正周期,且在區(qū)間$(\frac{π}{2},π)$上為增函數(shù)的是( 。
A.y=sin2xB.y=|cosx|C.y=-tanxD.$y=cos\frac{x}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某幾何體由三個圓柱和大小相同的兩個半球組成,它的三視圖如圖所示(單位:dm),則該幾何體的表面積是( 。▊(cè)視圖中間有小圓)
A.$\frac{25π}{2}$dm2B.11πdm2C.$\frac{19π}{2}$dm2D.9πdm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,正方形ABCD和直角梯形BDEF所在的平面互相垂直,O為正方形ABCD的中心,AD=DE=2$\sqrt{2}$,EF∥BD,BD=2EF,DE⊥BD.
(Ⅰ)求證:OE∥平面BFC;
(Ⅱ)求二面角A-CF-B正弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.${(x+\frac{1}{{\sqrt{x}}}-2)^5}$的展開式的常數(shù)項為88.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.“微信搶紅包”自2015年以來異;鸨,在某個微信群某次進行的搶紅包活動中,若所發(fā)紅包的總金額為10元,被隨機分配為1.49元,1.81元,2.19元,3.41元,0.62元,0.48元,共6份,供甲、乙等6人搶,每人只能搶一次,則甲、乙二人搶到的金額之和不低于4元的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習冊答案