【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 ,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)P為曲線C上一點(diǎn),Q為直線l上一點(diǎn),求|PQ|的最小值.

【答案】
(1)解:∵曲線C的參數(shù)方程為 ,(α為參數(shù)),

∴曲線C的普通方程為 =1,

∴曲線C的極坐標(biāo)方程為ρ2(1+sin2θ)=2.


(2)解:∵直線l的極坐標(biāo)方程為

∴直線l的直角坐標(biāo)方程為x﹣ +3=0.

∵P為曲線C: 上一點(diǎn),∴設(shè)p( ,sinα),

點(diǎn)P到直線l的距離:d= = ,

∵P為曲線C上一點(diǎn),Q為直線l上一點(diǎn),

∴當(dāng)sin( )=﹣1時(shí),|PQ|取最小值dmin= =


【解析】(1)由曲線C的參數(shù)方程先求出曲線C的普通方程,由此能求出曲線C的極坐標(biāo)方程.(2)先求出直線l的直角坐標(biāo)方程,設(shè)p( ,sinα),求出點(diǎn)P到直線l的距離,由此利用三角函數(shù)能求出|PQ|的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:
①存在實(shí)數(shù)α使
②直線 是函數(shù)y=sinx圖象的一條對(duì)稱軸.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,則tanα>tanβ.
其中正確命題的題號(hào)為( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱之為塹堵,如圖,在塹堵ABC﹣A1B1C1中,AB=BC,AA1>AB,塹堵的頂點(diǎn)C1到直線A1C的距離為m,C1到平面A1BC的距離為n,則 的取值范圍是(
A.(1,
B.( ,
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2alnx+x2﹣(a+4)x+1(a為常數(shù))
(1)若a>0,討論f(x)的單調(diào)性;
(2)若對(duì)任意的 a∈(1, ),都存在 x0∈(3,4]使得不等式f(x0)+ln a+1>m(a﹣a2)+2a ln 成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某縣共有戶籍人口60萬(wàn)人,該縣60歲以上、百歲以下的人口占比13.8%,百歲及以上的老人15人.現(xiàn)從該縣60歲及以上、百歲以下的老人中隨機(jī)抽取230人,得到如下頻數(shù)分布表:

年齡段(歲)

[60,70)

[70,80)

[80,90)

[90,99)

人數(shù)(人)

125

75

25

5


(1)從樣本中70歲及以上老人中采用分層抽樣的方法抽取21人進(jìn)一步了解他們的生活狀況,則80歲及以上老人應(yīng)抽多少人?
(2)從(1)中所抽取的80歲及以上的老人中,再隨機(jī)抽取2人,求抽到90歲及以上老人的概率;
(3)該縣按省委辦公廳、省人民政府辦公廳《關(guān)于加強(qiáng)新時(shí)期老年人優(yōu)待服務(wù)工作的意見(jiàn)》精神,制定如下老年人生活補(bǔ)貼措施,由省、市、縣三級(jí)財(cái)政分級(jí)撥款. ①本縣戶籍60歲及以上居民,按城鄉(xiāng)居民養(yǎng)老保險(xiǎn)實(shí)施辦法每月領(lǐng)取55元基本養(yǎng)老金;
②本縣戶籍80歲及以上老年人額外享受高齡老人生活補(bǔ)貼.
(a)百歲及以上老年人,每人每月發(fā)放345元生活補(bǔ)貼;
(b)90歲及以上、百歲以下老年人,每人每月發(fā)放200元的生活補(bǔ)貼;
(c)80歲及以上、90歲以下老年人,每人每月發(fā)放100元的生活補(bǔ)貼.
試估計(jì)政府執(zhí)行此項(xiàng)補(bǔ)貼措施的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列命題中:①兩個(gè)函數(shù)的對(duì)應(yīng)法則和值域相同,則這兩個(gè)是同一個(gè)函數(shù);②上單調(diào)遞增,③若函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域?yàn)?/span>;④若函數(shù)在其定義域內(nèi)不是單調(diào)函數(shù),則不存在反函數(shù);⑤函數(shù)的最小值為4;⑥若關(guān)于的不等式區(qū)間內(nèi)恒成立,則實(shí)數(shù)m的范圍是其中真命題的序號(hào)有_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐P﹣ABC的各頂點(diǎn)都在同一球的面上,且PA⊥平面ABC,若球O的體積為 (球的體積公式為 R3 , 其中R為球的半徑),AB=2,AC=1,∠BAC=60°,則三棱錐P﹣ABC的體積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , Sn=2an﹣3.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正數(shù)x,y滿足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實(shí)數(shù)a的取值范圍是(
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案