【題目】設(shè)正數(shù)x,y滿足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實(shí)數(shù)a的取值范圍是(
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)

【答案】C
【解析】解:∵log x+log3y=m,即log3 +log3y=log3 =m, ∴ =3m , ∵m∈[﹣1,1],∴ ∈[ ,3].
∵3ax2﹣18xy+(2a+3)y2≥(x﹣y)2
∴3a﹣18 +(2a+3) ≥1﹣2 + ,
=t,則2(a+1)t2﹣16t+3a﹣1≥0,
設(shè)f(t)=2(a+1)t2﹣16t+3a﹣1,
∵不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,
∴f(t)在[ ,3]上的最大值fmax(x)≥0,
(i)當(dāng)a=﹣1時(shí),f(t)=﹣16t﹣4,
∴fmax(t)=f( )=﹣ ﹣4<0,不符合題意;
(ii)若a<﹣1,則f(t)開(kāi)口向下,對(duì)稱軸為t= <0,
∴f(t)在[ ,3]上單調(diào)遞減,
∴fmax(t)=f( )= ﹣6<0,不符合題意;
(iii)若a>﹣1,則f(t)開(kāi)口向上,對(duì)稱軸為t= >0,
①若0< ,即a≥11時(shí),f(t)在[ ,3]上單調(diào)遞增,
∴fmax(t)=f(3)=21a﹣31>0,符合題意;
②若 ,即﹣1<a 時(shí),f(t)在[ ,3]上單調(diào)遞減,
∴fmax(t)=f( )= ﹣6≤ ﹣6<0,不符合題意;
③若 <3,即 <a<11時(shí),f(t)在[ ,3]上先減后增,
∴fmax(t)=f( )或fmax(t)=f(3),
∴f( )= ﹣6≥0或f(3)=21a﹣31>0,
解得a≥ 或a≥ ,又 <a<11,
≤a<11,
綜上,a的取值范圍是[ ,+∞).
故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 ,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)P為曲線C上一點(diǎn),Q為直線l上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的是(

A.命題“若,則”為假命題

B.命題“若,則”的否命題為假命題

C.命題“若,則方程有實(shí)根”的逆命題為真命題

D.命題“若,則”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,左、右焦點(diǎn)分別為圓F1、F2 , M是C上一點(diǎn),|MF1|=2,且| || |=2
(1)求橢圓C的方程;
(2)當(dāng)過(guò)點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交于不同兩點(diǎn)A、B時(shí),線段AB上取點(diǎn)Q,且Q滿足| || |=| || |,證明點(diǎn)Q總在某定直線上,并求出該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)一帶一路戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住一帶一路帶來(lái)的機(jī)遇, 決定開(kāi)發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為萬(wàn)元, 每生產(chǎn)臺(tái),需另投入成本(萬(wàn)元), 當(dāng)年產(chǎn)量不足臺(tái)時(shí), (萬(wàn)元); 當(dāng)年產(chǎn)量不小于臺(tái)時(shí) (萬(wàn)元), 若每臺(tái)設(shè)備售價(jià)為萬(wàn)元, 通過(guò)市場(chǎng)分析,該企業(yè)生產(chǎn)的電子設(shè)能全部.

(1)求年利潤(rùn) (萬(wàn)元)關(guān)年產(chǎn)(臺(tái))的函數(shù)關(guān)系式;

(2)年產(chǎn)為多少臺(tái)時(shí) ,該企業(yè)在這一電子設(shè)的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex+bex﹣2asinx(a,b∈R).
(1)當(dāng)a=0時(shí),討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=﹣1時(shí),若f(x)>0對(duì)任意x∈(0,π)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)φ變化時(shí),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過(guò)點(diǎn)(﹣4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式 恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b,c,d均為正數(shù),且a+b=c+d,證明:
(1)若abcd,則++;
(2)++是|a-b||c-d|的充要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案