18.在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=3,c=1,sinC=$\frac{2}{9}$,則sinA等于( 。
A.$\frac{2}{27}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{2}{3}$

分析 由已知利用正弦定理即可計(jì)算得解.

解答 解:∵a=3,c=1,sinC=$\frac{2}{9}$,
∴由正弦定理可得:sinA=$\frac{a•sinC}{c}$=$\frac{3×\frac{2}{9}}{1}$=$\frac{2}{3}$.
故選:D.

點(diǎn)評 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.要得到函數(shù)y=sinx的圖象,只需將函數(shù)y=sin(2x+$\frac{π}{4}$)的圖象上所有點(diǎn)的(  )
A.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平行移動$\frac{π}{8}$個單位長度
B.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平行移動$\frac{π}{4}$個單位長度
C.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向右平行移動$\frac{π}{4}$個單位長度
D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向右平行移動$\frac{π}{4}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在Rt△ABC中,∠C=$\frac{π}{2}$,AC=1,BC=$\sqrt{3}$,D是AB邊上的動點(diǎn),設(shè)BD=x,把△BDC沿DC翻折為△B′DC,若存在某個位置,使得異面直線B′C與AD所成的角為$\frac{π}{3}$,則實(shí)數(shù)x的取值范圍是( 。
A.0<x<$\frac{3-\sqrt{3}}{2}$B.$\frac{3-\sqrt{3}}{2}$<x<2C.0<x<$\frac{2-\sqrt{3}}{2}$D.$\frac{2-\sqrt{2}}{2}$<x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知單位向量$\overrightarrow{a}$,$\overrightarrow$,且$\overrightarrow{a}$•$\overrightarrow$=0,若t∈[0,1],則|t($\overrightarrow$-$\overrightarrow{a}$)+$\overrightarrow{a}$|+|$\frac{5}{12}$$\overrightarrow$+(1-t)($\overrightarrow{a}$-$\overrightarrow$)|的最小值為( 。
A.$\frac{{\sqrt{193}}}{12}$B.$\frac{13}{12}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.對于數(shù)列{xn},若對任意n∈N*,都有xn+2-xn+1<xn+1-xn成立,則稱數(shù)列{xn}為“減差數(shù)列”.設(shè)${b_n}=2t-\frac{{t{n^2}-n}}{{{2^{n-1}}}}$,若數(shù)列${b_5},{b_6},{b_7},…,{b_n}({n≥5,n∈{N^*}})$是“減差數(shù)列”,則實(shí)數(shù)t的取值范圍是( 。
A.$({0,\frac{3}{5}})$B.$({0,\frac{3}{5}}]$C.$({\frac{3}{5},+∞})$D.$[{\frac{3}{5},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.執(zhí)行如圖所示的算法框圖,如果輸出的函數(shù)值在區(qū)間[$\frac{1}{2}$,2)內(nèi),則輸入的實(shí)數(shù)x的取值范圍是[-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)z=$\frac{1-\sqrt{3}i}{\sqrt{3}+i}$,復(fù)數(shù)$\overline{z}$是z的共軛復(fù)數(shù),則z$•\overline{z}$=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為60°.求:
(1)|$\overrightarrow{AB}$-$\overrightarrow{AC}$|;
(2)$\overrightarrow{AB}$與$\overrightarrow{AB}$-$\overrightarrow{AC}$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)z=i(2+i)的共扼復(fù)數(shù)對應(yīng)的點(diǎn)所在象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案