13.對(duì)于數(shù)列{xn},若對(duì)任意n∈N*,都有xn+2-xn+1<xn+1-xn成立,則稱數(shù)列{xn}為“減差數(shù)列”.設(shè)${b_n}=2t-\frac{{t{n^2}-n}}{{{2^{n-1}}}}$,若數(shù)列${b_5},{b_6},{b_7},…,{b_n}({n≥5,n∈{N^*}})$是“減差數(shù)列”,則實(shí)數(shù)t的取值范圍是( 。
A.$({0,\frac{3}{5}})$B.$({0,\frac{3}{5}}]$C.$({\frac{3}{5},+∞})$D.$[{\frac{3}{5},+∞})$

分析 利用新定義列出bn+bn+2<2bn+1(n≥5),轉(zhuǎn)化為t與n的不等式,利用函數(shù)的最值求解實(shí)數(shù)t的取值范圍.

解答 解:由數(shù)列${b_5},{b_6},{b_7},…,{b_n}({n≥5,n∈{N^*}})$是“減差數(shù)列”,得bn+bn+2<2bn+1(n≥5),
即$t-\frac{{t{n^2}-n}}{2^n}+$$t-\frac{{t{{({n+2})}^2}-({n+2})}}{{{2^{n+2}}}}<2t-\frac{{t{{({n+1})}^2}-({n+1})}}{2^n}$,
即$\frac{{t{n^2}-n}}{2^n}+\frac{{t{{({n+2})}^2}-({n+2})}}{{{2^{n+2}}}}>\frac{{t{{({n+1})}^2}-({n+1})}}{2^n}$,
化簡(jiǎn)得t(n2-4n)>n-2,
當(dāng)n≥5時(shí),若t(n2-4n)>n-2恒成立,則$t>\frac{n-2}{{{n^2}-4n}}=\frac{1}{{({n-2})-\frac{4}{n-2}}}$恒成立,
又當(dāng)n≥5時(shí),y=$\frac{1}{{({n-2})-\frac{4}{n-2}}}$是減函數(shù),n=5時(shí)表達(dá)式取得最大值為$\frac{3}{5}$,
則t的取值范圍是$({\frac{3}{5},+∞})$.
故選:C.

點(diǎn)評(píng) 本題考查數(shù)列的應(yīng)用,數(shù)列與函數(shù)的關(guān)系,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.集合A={0,1}的真子集的個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.作出下列函數(shù)的圖象,并根據(jù)圖象指出函數(shù)的值域.
(1)y=$\frac{x|1-x|}{1{-x}^{2}}$;
(2)y=$\frac{{e}^{x}}{x-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知點(diǎn)M(-1,0)和N(1,0),若某直線上存在點(diǎn)P,使得|PM|+|PN|=4,則稱該直線為“橢型直線”.現(xiàn)有下列直線:①x-2y+6=0;②x-y=0;③2x-y+1=0;④x+y-3=0.其中是“橢型直線”的是( 。
A.①③B.①②C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.學(xué)校5月1號(hào)至5月3號(hào)擬安排6位老師值班,要求每人值班1天,每天安排2人,若6位老師中,甲不能值2號(hào),乙不能值3號(hào),則不同的安排值班方法數(shù)為42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知a=3,c=1,sinC=$\frac{2}{9}$,則sinA等于(  )
A.$\frac{2}{27}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,x軸被曲線C2:y=x2-b截得的線段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng).
(1)求C1的方程;
(2)設(shè)C2與y軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線l與C2相交于點(diǎn)A、B,直線MA,MB分別與C1相交于D,E
(i)證明:MD⊥ME
(ii)記△MAB,△MDE的面積分別是S1,S2.問(wèn):是否存在直線l,使得$\frac{{S}_{1}}{{S}_{2}}$=$\frac{17}{23}$?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,利用定義法證明f(x)在R上是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=$\frac{\sqrt{1+{x}^{2}}+x-1}{\sqrt{1+{x}^{2}}+x+1}$是( 。
A.非奇非偶函數(shù)
B.既不是奇函數(shù),又不是偶函數(shù)奇函數(shù)
C.偶函數(shù)
D.奇函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案