分析 ①若其最小周期為1,則該數(shù)列是常數(shù)列,即每一項都等于1,此時a=1,而該數(shù)列的項分別為1,1,0,1,1,0,1,1,0,…,即此時該數(shù)列是以3為周期的數(shù)列,矛盾,舍去.②若其最小周期為2,同理得出矛盾,舍去.綜上所述,當數(shù)列{xn}的周期最小時,其最小周期是3,即可得出.
解答 解:①若其最小周期為1,則該數(shù)列是常數(shù)列,即每一項都等于1,此時a=1,
而該數(shù)列的項分別為1,1,0,1,1,0,1,1,0,…,即此時該數(shù)列是以3為周期的數(shù)列,矛盾,舍去.
②若其最小周期為2,則有a3=a1,即|a-1|=1,a-1=1或-1,a=2或a=0,又a≠0,故a=2,
此時該數(shù)列的項依次為1,2,1,1,0,…,由此可見,此時它并不是以2為周期的數(shù)列,舍去.
綜上所述,當數(shù)列{xn}的周期最小時,其最小周期是3.
(i)a≥1時,a1=1,a2=a,a3=|a-1|=a-1,a4=|a-1-a|=1,a5=a,…,此時該數(shù)列的前2 015項和是671×(1+a+a-1)+(1+a)=1343a+1.
(ii)a<1,a≠0時,a1=1,a2=a,a3=|a-1|=1-a,a4=|1-a-a|=1,解得a=0或1,舍去.
故答案為:1343a+1(a≥1).
點評 本題考查了數(shù)列的周期性、分類討論方法,考查了推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{7}$ | B. | 2 | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x2 | B. | y=x|x| | C. | y=x+$\frac{2}{x}$ | D. | y=x-$\frac{4}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{x^2}{2}-\frac{y^2}{3}=1$ | B. | $\frac{x^2}{3}-\frac{y^2}{2}=1$ | C. | $\frac{x^2}{4}-{y^2}=1$ | D. | ${x^2}-\frac{y^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{7}{8}$ | C. | $\frac{9}{8}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{5}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com